Artificial intelligence (AI) and machine learning (ML) are some of the most hyped enterprise technologies and have caught the imagination of boards, with the promise of efficiencies and lower costs, and the public, with developments such as self-driving cars and autonomous quadcopter air taxis.
Of course, the reality is rather more prosaic, with firms looking to AI to automate areas such as online product recommendations or spotting defects on production lines. Organisations are using AI in vertical industries, such as financial services, retail and energy, where applications include fraud prevention and analysing business performance for loans, demand prediction for seasonal products and crunching through vast amounts of data to optimise energy grids.
All this falls short of the idea of AI as an intelligent machine along the lines of 2001: A Space Odysseys HAL. But it is still a fast-growing market, driven by businesses trying to drive more value from their data, and automate business intelligence and analytics to improve decision-making.
Industry analyst firm Gartner, for example, predicts that the global market for AI software will reach US$62bn this year, with the fastest growth coming from knowledge management. According to the firm, 48% of the CIOs it surveyed have already deployed artificial intelligence and machine learning or plan to do so within the next 12 months.
Much of this growth is being driven by developments in cloud computing, as firms can take advantage of the low initial costs and scalability of cloud infrastructure. Gartner, for example, cites cloud computing as one of five factors driving AI and ML growth, as it allows firms to experiment and operationalise AI faster with lower complexity.
In addition, the large public cloud providers are developing their own AI modules, including image recognition, document processing and edge applications to support industrial and distribution processes.
Some of the fastest-growing applications for AI and ML are around e-commerce and advertising, as firms look to analyse spending patterns and make recommendations, and use automation to target advertising. This takes advantage of the growing volume of business data that already resides in the cloud, cutting out the costs and complexity associated with moving data.
The cloud also lets organisations make use of advanced analytics and compute facilities, which are often not cost-effective to build in-house. This includes the use of dedicated, graphics processing units (GPUs) and extremely large storage volumes made possible by cloud storage.
Such capabilities are beyond the reach of many organisations on-prem offerings, such as GPU processing. This demonstrates the importance of cloud capability in organisations digital strategies, says Lee Howells, head of AI at advisory firm PA Consulting.
Firms are also building up expertise in their use of AI through cloud-based services. One growth area is AIOps, where organisations use artificial intelligence to optimise their IT operations, especially in the cloud.
Another is MLOps, which Gartner says is the operationalisation of multiple AI models, creating composite AI environments. This allows firms to build up more comprehensive and functional models from smaller building blocks. These blocks can be hosted on on-premise systems, in-house, or in hybrid environments.
Just as cloud service providers offer the building blocks of IT compute, storage and networking so they are building up a range of artificial intelligence and machine learning models. They are also offering AI- and ML-based services which firms, or third-party technology companies, can build into their applications.
These AI offerings do not need to be end-to-end processes, and often they are not. Instead, they provide functionality that would be costly or complex for a firm to provide itself. But they are also functions that can be performed without compromising the firms security or regulatory requirements, or that involve large-scale migration of data.
Examples of these AI modules include image processing and image recognition, document processing and analysis, and translation.
We operate within an ecosystem. We buy bricks from people and then we build houses and other things out of those bricks. Then we deliver those houses to individual customers, says Mika Vainio-Mattila, CEO at Digital Workforce, a robotic process automation (RPA) company. The firm uses cloud technologies to scale up its delivery of automation services to its customers, including its robot as a service, which can run either on Microsoft Azure or a private cloud.
Vainio-Mattila says AI is already an important part of business automation. The one that is probably the most prevalent is intelligent document processing, which is basically making sense of unstructured documents, he says.
The objective is to make those documents meaningful to robots, or automated digital agents, that then do things with the data in those documents. That is the space where we have seen most use of AI tools and technologies, and where we have applied AI ourselves most.
He sees a growing push from the large public cloud companies to provide AI tools and models. Initially, that is to third-party software suppliers or service providers such as his company, but he expects the cloud solution providers (CSPs) to offer more AI technology directly to user businesses too.
Its an interesting space because the big cloud providers spearheaded by Google obviously, but very closely followed by Microsoft and Amazon, and others, IBM as well have implemented services around ML- and AI-based services for deciphering unstructured information. That includes recognising or classifying photographs or, or translation.
These are general-purpose technologies designed so that others can reuse them. The business applications are frequently very use-case specific and need experts to tailor them to a companys business needs. And the focus is more on back-office operations than applications such as driverless cars.
Cloud providers also offer domain-specific modules, according to PA Consultings Howells. These have already evolved in financial services, manufacturing and healthcare, he says.
In fact, the range of AI services offered in the cloud is wide, and growing. The big [cloud] players now have models that everyone can take and run, says Tim Bowes, associate director for data engineering at consultancy Dufrain. Two to three years ago, it was all third-party technology, but they are now building proprietary tools.
Azure, for example, offers Azure AI, with vision, speech, language and decision-making AI models that users can access via AI calls. Microsoft breaks its offerings down into Applied AI Services, Cognitive Services, machine learning and AI infrastructure.
Google offers AI infrastructure, Vertex AI, an ML platform, data science services, media translation and speech to text, to name a few. Its Cloud Inference API lets firms work with large datasets stored in Googles cloud. The firm, unsurprisingly, provides cloud GPUs.
Amazon Web Services (AWS) also provides a wide range of AI-based services, including image recognition and video analysis, translation, conversational AI for chatbots, natural language processing, and a suite of services aimed at developers. AWS also promotes its health and industrial modules.
The large enterprise software and software-as-a-service (SaaS) providers also have their own AI offerings. These include Salesforce (ML and predictive analytics), Oracle (ML tools including pre-trained models, computer vision and NLP) and IBM (Watson Studio and Watson Services). IBM has even developed a specific set of AI-based tools to help organisations understand their environmental risks.
Specialist firms include H2O.ai, UIPath, Blue Prism and Snaplogic, although the latter three could be better described as intelligent automation or RPA companies than pure-play AI providers.
It is, however, a fine line. According to Jeremiah Stone, chief technology officer (CTO) at Snaplogic, enterprises are often turning to AI on an experimental basis, even where more mature technology can be more appropriate.
Probably 60% or 70% of the efforts Ive seen are, at least initially, starting out exploring AI and ML as a way to solve problems that may be better solved with more well-understood approaches, he says. But that is forgivable because, as people, we continually have extreme optimism for what software and technology can do for us if we didnt, we wouldnt move forward.
Experimentation with AI will, he says, bring longer-term benefits.
There are other limitations to AI in the cloud. First and foremost, cloud-based services are best suited to generic data or generic processes. This allows organisations to overcome the security, privacy and regulatory hurdles involved in sharing data with third parties.
AI tools counter this by not moving data they stay in the local business application or database. And security in the cloud is improving, to the point where more businesses are willing to make use of it.
Some organisations prefer to keep their most sensitive data on-prem. However, with cloud providers offering industry-leading security capabilities, the reason for doing this is rapidly reducing, says PA Consultings Howells.
Nonetheless, some firms prefer to build their own AI models and do their own training, despite the cost. If AI is the product and driverless cars are a prime example the business will want to own the intellectual property in the models.
But even then, organisations stand to benefit from areas where they can use generic data and models. The weather is one example, image recognition is potentially another.
Even firms with very specific demands for their AI systems might benefit from the expansive data resources in the cloud for model training. Potentially, they might also want to use cloud providers synthetic data, which allows model training without the security and privacy concerns of data sharing.
And few in the industry would bet against those services coming, first and foremost, from the cloud service providers.
See the rest here:
Putting artificial intelligence and machine learning workloads in the cloud - ComputerWeekly.com
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]