In a major operators network control center complaints are flooding in. The network is down across a large US city; calls are getting dropped and critical infrastructure is slow to respond. Pulling up the systems event history, the manager sees that new 5G towers were installed in the affected area today.
Did installing those towers cause the outage, or was it merely a coincidence? In circumstances such as these, being able to answer this question accurately is crucial for Ericsson.
Most machine learning-based data science focuses on predicting outcomes, not understanding causality. However, some of the biggest names in the field agree its important to start incorporating causality into our AI and machine learning systems.
Yoshua Bengio, one of the worlds most highly recognized AI experts, explained in a recent Wired interview: Its a big thing to integrate [causality] into AI. Current approaches to machine learning assume that the trained AI system will be applied on the same kind of data as the training data. In real life it is often not the case.
Yann LeCun, a recent Turing Award winner, shares the same view, tweeting: Lots of people in ML/DL [deep learning] know that causal inference is an important way to improve generalization.
Causal inference and machine learning can address one of the biggest problems facing machine learning today that a lot of real-world data is not generated in the same way as the data that we use to train AI models. This means that machine learning models often arent robust enough to handle changes in the input data type, and cant always generalize well. By contrast, causal inference explicitly overcomes this problem by considering what might have happened when faced with a lack of information. Ultimately, this means we can utilize causal inference to make our ML models more robust and generalizable.
When humans rationalize the world, we often think in terms of cause and effect if we understand why something happened, we can change our behavior to improve future outcomes. Causal inference is a statistical tool that enables our AI and machine learning algorithms to reason in similar ways.
Lets say were looking at data from a network of servers. Were interested in understanding how changes in our network settings affect latency, so we use causal inference to proactively choose our settings based on this knowledge.
The gold standard for inferring causal effects is randomized controlled trials (RCTs) or A/B tests. In RCTs, we can split a population of individuals into two groups: treatment and control, administering treatment to one group and nothing (or a placebo) to the other and measuring the outcome of both groups. Assuming that the treatment and control groups arent too dissimilar, we can infer whether the treatment was effective based on the difference in outcome between the two groups.
However, we can't always run such experiments. Flooding half of our servers with lots of requests might be a great way to find out how response time is affected, but if theyre mission-critical servers, we cant go around performing DDOS attacks on them. Instead, we rely on observational datastudying the differences between servers that naturally get a lot of requests and those with very few requests.
There are many ways of answering this question. One of the most popular approaches is Judea Pearl's technique for using to statistics to make causal inferences. In this approach, wed take a model or graph that includes measurable variables that can affect one another, as shown below.
To use this graph, we must assume the Causal Markov Condition. Formally, it says that subject to the set of all its direct causes, a node is independent of all the variables which are not direct causes or direct effects of that node. Simply put, it is the assumption that this graph captures all the real relationships between the variables.
Another popular method for inferring causes from observational data is Donald Rubin's potential outcomes framework. This method does not explicitly rely on a causal graph, but still assumes a lot about the data, for example, that there are no additional causes besides the ones we are considering.
For simplicity, our data contains three variables: a treatment , an outcome , and a covariate . We want to know if having a high number of server requests affects the response time of a server.
In our example, the number of server requests is determined by the memory value: a higher memory usage means the server is less likely to get fed requests. More precisely, the probability of having a high number of requests is equal to 1 minus the memory value (i.e. P(x=1)=1-z , where P(x=1) is the probability that x is equal to 1). The response time of our system is determined by the equation (or hypothetical model):
y=1x+5z+
Where is the error, that is, the deviation from the expected value of given values of and depends on other factors not included in the model. Our goal is to understand the effect of on via observations of the memory value, number of requests, and response times of a number of servers with no access to this equation.
There are two possible assignments (treatment and control) and an outcome. Given a random group of subjects and a treatment, each subject has a pair of potential outcomes: and , the outcomes Y_i (0) and Y_i (1) under control and treatment respectively. However, only one outcome is observed for each subject, the outcome under the actual treatment received: Y_i=xY_i (1)+(1-x)Y_i (0). The opposite potential outcome is unobserved for each subject and is therefore referred to as a counterfactual.
For each subject, the effect of treatment is defined to be Y_i (1)-Y_i (0) . The average treatment effect (ATE) is defined as the average difference in outcomes between the treatment and control groups:
E[Y_i (1)-Y_i (0)]
Here, denotes an expectation over values of Y_i (1)-Y_i (0)for each subject , which is the average value across all subjects. In our network example, a correct estimate of the average treatment effect would lead us to the coefficient in front of x in equation (1) .
If we try to estimate this by directly subtracting the average response time of servers with x=0 from the average response time of our hypothetical servers with x=1, we get an estimate of the ATE as 0.177 . This happens because our treatment and control groups are not inherently directly comparable. In an RTC, we know that the two groups are similar because we chose them ourselves. When we have only observational data, the other variables (such as the memory value in our case) may affect whether or not one unit is placed in the treatment or control group. We need to account for this difference in the memory value between the treatment and control groups before estimating the ATE.
One way to correct this bias is to compare individual units in the treatment and control groups with similar covariates. In other words, we want to match subjects that are equally likely to receive treatment.
The propensity score ei for subject is defined as:
e_i=P(x=1z=z_i ),z_i[0,1]
or the probability that x is equal to 1the unit receives treatmentgiven that we know its covariate is equal to the value z_i. Creating matches based on the probability that a subject will receive treatment is called propensity score matching. To find the propensity score of a subject, we need to predict how likely the subject is to receive treatment based on their covariates.
The most common way to calculate propensity scores is through logistic regression:
Now that we have calculated propensity scores for each subject, we can do basic matching on the propensity score and calculate the ATE exactly as before. Running propensity score matching on the example network data gets us an estimate of 1.008 !
We were interested in understanding the causal effect of binary treatment x variable on outcome y . If we find that the ATE is positive, this means an increase in x results in an increase in y. Similarly, a negative ATE says that an increase in x will result in a decrease in y .
This could help us understand the root cause of an issue or build more robust machine learning models. Causal inference gives us tools to understand what it means for some variables to affect others. In the future, we could use causal inference models to address a wider scope of problems both in and out of telecommunications so that our models of the world become more intelligent.
Special thanks to the other team members of GAIA working on causality analysis: Wenting Sun, Nikita Butakov, Paul Mclachlan, Fuyu Zou, Chenhua Shi, Lule Yu and Sheyda Kiani Mehr.
If youre interested in advancing this field with us, join our worldwide team of data scientists and AI specialists at GAIA.
In this Wired article, Turing Award winner Yoshua Bengio shares why deep learning must begin to understand the why before it can replicate true human intelligence.
In this technical overview of causal inference in statistics, find out whats need to evolve AI from traditional statistical analysis to causal analysis of multivariate data.
This journal essay from 1999 offers an introduction to the Causal Markov Condition.
Read this article:
Overview of causal inference in machine learning - Ericsson
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]