Executive Summary
What only insiders generally know is that data scientists, once hired, spend more time building and maintaining the tooling for AI systems than they do building the AI systems themselves. Now, though, new tools are emerging to ease the entry into this era of technological innovation. Unified platforms that bring the work of collecting, labelling, and feeding data into supervised learning models, or that help build the models themselves, promise to standardize workflows in the way that Salesforce and Hubspot have for managing customer relationships. Some of these platforms automate complex tasks using integrated machine-learning algorithms, making the work easier still. This frees up data scientists to spend time building the actual structures they were hired to create, and puts AI within reach of even small- and medium-sized companies.
Nearly two years ago, Seattle Sport Sciences, a company that provides data to soccer club executives, coaches, trainers and players to improve training, made a hard turn into AI. It began developing a system that tracks ball physics and player movements from video feeds. To build it, the company needed to label millions of video frames to teach computer algorithms what to look for. It started out by hiring a small team to sit in front of computer screens, identifying players and balls on each frame. But it quickly realized that it needed a software platform in order to scale. Soon, its expensive data science team was spending most of its time building a platform to handle massive amounts of data.
These are heady days when every CEO can see or at least sense opportunities for machine-learning systems to transform their business. Nearly every company has processes suited for machine learning, which is really just a way of teaching computers to recognize patterns and make decisions based on those patterns, often faster and more accurately than humans. Is that a dog on the road in front of me? Apply the brakes. Is that a tumor on that X-ray? Alert the doctor. Is that a weed in the field? Spray it with herbicide.
What only insiders generally know is that data scientists, once hired, spend more time building and maintaining the tools for AI systems than they do building the systems themselves. A recent survey of 500 companies by the firm Algorithmia found that expensive teams spend less than a quarter of their time training and iterating machine-learning models, which is their primary job function.
Now, though, new tools are emerging to ease the entry into this era of technological innovation. Unified platforms that bring the work of collecting, labelling and feeding data into supervised learning models, or that help build the models themselves, promise to standardize workflows in the way that Salesforce and Hubspot have for managing customer relationships. Some of these platforms automate complex tasks using integrated machine-learning algorithms, making the work easier still. This frees up data scientists to spend time building the actual structures they were hired to create, and puts AI within reach of even small- and medium-sized companies, like Seattle Sports Science.
Frustrated that its data science team was spinning its wheels, Seattle Sports Sciences AI architect John Milton finally found a commercial solution that did the job. I wish I had realized that we needed those tools, said Milton. He hadnt factored the infrastructure into their original budget and having to go back to senior management and ask for it wasnt a pleasant experience for anyone.
The AI giants, Google, Amazon, Microsoft and Apple, among others, have steadily released tools to the public, many of them free, including vast libraries of code that engineers can compile into deep-learning models. Facebooks powerful object-recognition tool, Detectron, has become one of the most widely adopted open-source projects since its release in 2018. But using those tools can still be a challenge, because they dont necessarily work together. This means data science teams have to build connections between each tool to get them to do the job a company needs.
The newest leap on the horizon addresses this pain point. New platforms are now allowing engineers to plug in components without worrying about the connections.
For example, Determined AI and Paperspace sell platforms for managing the machine-learning workflow. Determined AIs platform includes automated elements to help data scientists find the best architecture for neural networks, while Paperspace comes with access to dedicated GPUs in the cloud.
If companies dont have access to a unified platform, theyre saying, Heres this open source thing that does hyperparameter tuning. Heres this other thing that does distributed training, and they are literally gluing them all together, said Evan Sparks, cofounder of Determined AI. The way theyre doing it is really with duct tape.
Labelbox is a training data platform, or TDP, for managing the labeling of data so that data science teams can work efficiently with annotation teams across the globe. (The author of this article is the companys co-founder.) It gives companies the ability to track their data, spot, and fix bias in the data and optimize the quality of their training data before feeding it into their machine-learning models.
Its the solution that Seattle Sports Sciences uses. John Deere uses the platform to label images of individual plants, so that smart tractors can spot weeds and deliver pesticide precisely, saving money and sparing the environment unnecessary chemicals.
Meanwhile, companies no longer need to hire experienced researchers to write machine-learning algorithms, the steam engines of today. They can find them for free or license them from companies who have solved similar problems before.
Algorithmia, which helps companies deploy, serve and scale their machine-learning models, operates an algorithm marketplace so data science teams dont duplicate other peoples effort by building their own. Users can search through the 7,000 different algorithms on the companys platform and license one or upload their own.
Companies can even buy complete off-the-shelf deep learning models ready for implementation.
Fritz.ai, for example, offers a number of pre-trained models that can detect objects in videos or transfer artwork styles from one image to another all of which run locally on mobile devices. The companys premium services include creating custom models and more automation features for managing and tweaking models.
And while companies can use a TDP to label training data, they can also find pre-labeled datasets, many for free, that are general enough to solve many problems.
Soon, companies will even offer machine-learning as a service: Customers will simply upload data and an objective and be able to access a trained model through an API.
In the late 18th century, Maudslays lathe led to standardized screw threads and, in turn, to interchangeable parts, which spread the industrial revolution far and wide. Machine-learning tools will do the same for AI, and, as a result of these advances, companies are able to implement machine-learning with fewer data scientists and less senior data science teams. Thats important given the looming machine-learning, human resources crunch: According to a 2019 Dun & Bradstreet report, 40 percent of respondents from Forbes Global 2000 organizations say they are adding more AI-related jobs. And the number of AI-related job listings on the recruitment portal Indeed.com jumped 29 percent from May 2018 to May 2019. Most of that demand is for supervised-learning engineers.
But C-suite executives need to understand the need for those tools and budget accordingly. Just as Seattle Sports Sciences learned, its better to familiarize yourself with the full machine-learning workflow and identify necessary tooling before embarking on a project.
That tooling can be expensive, whether the decision is to build or to buy. As is often the case with key business infrastructure, there are hidden costs to building. Buying a solution might look more expensive up front, but it is often cheaper in the long run.
Once youve identified the necessary infrastructure, survey the market to see what solutions are out there and build the cost of that infrastructure into your budget. Dont fall for a hard sell. The industry is young, both in terms of the time that its been around and the age of its entrepreneurs. The ones who are in it out of passion are idealistic and mission driven. They believe they are democratizing an incredibly powerful new technology.
The AI tooling industry is facing more than enough demand. If you sense someone is chasing dollars, be wary. The serious players are eager to share their knowledge and help guide business leaders toward success. Successes benefit everyone.
Follow this link:
Navigating the New Landscape of AI Platforms - Harvard Business Review
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]