Office can now suggest better phrases in Word or entire replies in Outlook, design your PowerPoint slides, and coach you on presenting them. Microsoft built those features with Azure Machine Learning and big models - while keeping your Office 365 data private.
The Microsoft Office clients have been getting smarter for several years: the first version of Editor arrived in Word in 2016, based on Bing's machine learning, and it's now been extended to include the promised Ideas feature with extra capabilities. More and more of the new Office features in the various Microsoft 365 subscriptions are underpinned by machine learning.
You get the basic spelling and grammar checking in any version of Word. But if you have a subscription, Word, Outlook and a new Microsoft Editor browser extension will be able to warn you if you're phrasing something badly, using gendered idioms so common that you may not notice who they exclude, hewing so closely to the way your research sources phrased something that you need to either write it in your own words or enter a citation, or just not sticking to your chosen punctuation rules.
SEE:Choosing your Windows 7 exit strategy: Four options(TechRepublic Premium)
Word can use the real-world number comparisons that Bing has had for a while to make large numbers more comprehensible. It can also translate the acronyms you use inside your organization -- and distinguish them from what someone in another industry would mean by them. It can even recognise that those few words in bold are a heading and ask if you want to switch to a heading style so they show up in the table of contents.
Outlook on iOS uses machine learning to turn the timestamp on an email to a friendlier 'half an hour ago' when you have it read out your messages. Mobile and web Outlook use machine learning and natural-language processing to suggest three quick replies for some messages, which might include scheduling a meeting.
Excel has the same natural-language queries for spreadsheets as Power BI, letting you ask questions about your data. PowerPoint Designer can automatically crop pictures, put them in the right place on the slide and suggest a layout and design; it uses machine learning for text and slide structure analysis, image categorisation, recommending content to include and ranking the layout suggestions it makes. The Presenter Coach tells you if you're slouching, talking in a monotone or staring down at your screen all the time while you're talking, using machine learning to analyse your voice and posture from your webcam.
How PowerPoint Designer uses AML (Azure Machine Learning).
Image: Microsoft
Many of these features are built using the Azure Machine Learning service, Erez Barak, partner group program manager for AI Platform Management, told TechRepublic. At the other extreme, some call the pre-built Azure Cognitive Services APIs for things like speech recognition in the presentation coach, as well as captioning PowerPoint presentations in real-time and live translation into 60-plus languages (and those APIs are themselves built using AML).
Other features are based on customising pre-trained models like Turing Neural Language Generation, a seventeen-billion parameter deep-learning language model that can answer questions, complete sentences and summarize text -- useful for suggesting alternative phrases in Editor or email replies in Outlook. "We use those models in Office after applying some transfer learning to customise them," Barak explained. "We leverage a lot of data, not directly but by the transfer learning we do; that's based on big data to give us a strong natural-language understanding base. For everything we do in Office requires that context; we try to leverage the data we have from big models -- from the Turing model especially given its size and its leadership position in the market -- in order to solve for specific Office problems."
AML is a machine-learning platform for both Microsoft product teams and customers to build intelligent features that can plug into business processes. It provides automated pipelines that take large amounts of data stored in Azure Data Lake, merge and pre-process the raw data, and feed them into distributed training running in parallel across multiple VMs and GPUs. The machine-learning version of the automated deployment common in DevOps is known as MLOps. Office machine-learning models are often built using frameworks like PyTorch or TensorFlow; the PowerPoint team uses a lot of Python and Jupiter notebooks.
The Office data scientists experiment with multiple different models and variations; the best model then gets stored back into Azure Data Lake and downloaded into AML using the ONNX runtime (open-sourced by Microsoft and Facebook) to run in production without having to be rebuilt. "Packaging the models in the ONNX runtime, especially for PowerPoint Designer, helps us to normalise the models, which is great for MLOps; as you tie these into pipelines, the more normalised assets you have, the easier, simpler and more productive that process becomes," said Barak.
ONNX also helps with performance when it comes to running the models in Office, especially for Designer. "If you think about the number of inference calls or scoring calls happening, performance is key: every small percentage and sub-percentage point matters," Barak pointed out.
A tool like Designer that's suggesting background images and videos to use as content needs a lot of compute and GPU to be fast enough. Some of the Turing models are so large that they run on the FPGA-powered Brainwave hardware inside Azure because otherwise they'd be too slow for workloads like answering questions in Bing searches. Office uses the AML compute layer for training and production which, Barak said, "provides normalised access to different types of compute, different types of machines, and also provides a normalised view into the performance of those machines".
"Office's training needs are pretty much bleeding edge: think long-running, GPU-powered, high-bandwidth training jobs that could run for days, sometimes for weeks, across multiple cores, and require a high level of visibility into the end process as well as a high level of reliability," Barak explained. "We leverage a lot of high-performing GPUs for both training the base models and transfer learning." Although the size of training data varies between the scenarios, Barak estimates that fine-tuning the Turing base model with six months of data would use 30-50TB of data (on top of the data used to train the original model).
Acronyms accesses your Office 365 data, because it needs to know which acronyms your organisation uses.
Image: Mary Branscombe/TechRepublic
The data used to train Editor's rewrite suggestions includes documents written by people with dyslexia, and many of the Office AI features use anonymised usage data from Office 365 usage. Acronyms is one of the few features that specifically uses your own Office 365 data, because it needs to find out which acronyms your organisation uses, but that isn't shared with any other Office users. Microsoft also uses public data for many features rather than trying to mine that from private Office documents. The similarity checker uses Bing data, and Editor's sentence rewrite uses public data like Wikipedia as well as public news data to train on.
As the home of so many documents, Office 365 has a wealth of data, but it also has strong compliance policies and processes that Microsoft's data scientists must follow. Those policies change over time as laws change or Office gets accredited to new standards -- "think of it as a moving target of policies and commitments Office has made in the past and will continue to make," Barak suggested. "In order for us to leverage a subset of the Office data in machine learning, naturally, we adhere to all those compliance promises."
LEARN MORE:Office 365 Consumer pricing and features
But models like those used in Presentation Designer need frequent retraining (at least every month) to deal with new data, such as which of the millions of slide designs it suggests get accepted and are retained in presentations. That data is anonymised before it's used for training, and the training is automated with AML pipelines. But it's important to score retrained models consistently with existing models so you can tell when there's an improvement, or if an experiment didn't pan out, so data scientists need repeated access to data.
"People continuously use that, so we continuously have new data around people's preferences and choices, and we want to continuously retrain. We can't have a system that needs to be adjusted over and over again, especially in the world of compliance. We need to have a system that's automatable. That's reproducible -- and frankly, easy enough for those users to use," Barak said.
"They're using AML Data Sets, which allow them to access this data while using the right policies and guard rails, so they're not creating copies of the data -- which is a key piece of keeping the compliance and trust promise we make to customers. Think of them as pointers and views into subsets of the data that data scientists want to use for machine learning."It's not just about access; it's about repeatable access, when the data scientists say 'let's bring in that bigger model, let's do some transfer learning using the data'. It's very dynamic: there's new data because there's more activity or more people [using it]. Then the big models get refreshed on a regular basis. We don't just have one version of the Turing model and then we're done with it; we have continuous versions of that model which we want to put in the hands of data scientists with an end-to-end lifecycle."
Those data sets can be shared without the risk of losing track of the data, which means other data scientists can run experiments on the same data sets. This makes it easier for them to get started developing a new machine-learning model.
Getting AML right for Microsoft product teams also helps enterprises who want to use AML for their own systems. "If we nail the likes and complexities of Office, we enable them to use machine learning in multiple business processes," Barak said. "And at the same time we learn a lot about automation and requirements around compliance that also very much applies to a lot of our third-party customers."
Be your company's Microsoft insider by reading these Windows and Office tips, tricks, and cheat sheets. Delivered Mondays and Wednesdays
Read the rest here:
Microsoft Office 365: How these Azure machine-learning services will make you more productive and efficient - TechRepublic
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]