Over the past few decades, medical imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), mammography, ultrasound, and X-ray, have been used for the early detection, diagnosis, and treatment of diseases. In the clinic, medical image interpretation has been performed mostly by human experts such as radiologists and physicians.
However, given wide variations in pathology and the potential fatigue of human experts, researchers and doctors have begun to benefit from the machine learning methods. The process of applying machine learning methods in medical image analysis is called medical image computation. We will introduce our work in medical image synthesis, classification, and segmentation.
Medical image synthesis:
Complementary imaging modalities are always acquired simultaneously to indicate the disease areas, present the various tissue properties, and help to make an accurate and early diagnosis. However, some imaging modalities are unavailable or lacking due to different reasons such as cost, radiation or other limitations. In such cases, medical imaging synthesis is a novel and effective solution.
Although the classic synthesis algorithms has achieved remarkable results, they are confronted with the same fundamental limitation: it is difficult to generate plausible images with significantly diverse structures, because the generator learns to largely ignore the latent vectors (i.e. the noise vectors input) without any prior knowledge in the training process of GANs.
Especially for the generation of brain images that have diverse structural details (e.g. gyri and sulci) between different subjects. To deal with this challenge, our team proposed a novel end-to-end network, called Bidirectional GAN [1], where image contexts and latent vector were effectively used and jointly optimized for the brain MR to PET synthesis. The framework of the proposed Bidirectional GAN is shown in Fig 1.
To be more specific, a bidirectional mapping mechanism between the latent vector and the output image was introduced, while an advanced generator architecture was adopted to optimally extract and generate the intrinsic features of PET images.
Finally, this work devised a composite loss function containing an additional pixel-wise loss and perceptual loss to encourage less blurring and yield visually more realistic results. As an attempt to bridge the gap between network generative capability and real medical images, the proposed method not only focused on synthesizing perceptually realistic images, but also concentrated on reflecting the diverse brain attributes of different subjects.
Medical image segmentation
Medical image segmentation plays an important role in computer-aided diagnosis (CAD) for the detection and diagnosis of diseases. However, traditional segmentation needed to process manually by pathologists and is thus subjective and time-consuming. Therefore, automatic methods for segmentation are in urgent demand to get measurements in the clinical practice.
Fully supervised training requires a large number of manually labeled masks, which is hard to obtain and only experts can provide reliable annotations. To address this issue, we proposed a novel method named Consistent Perception GAN for semi-supervised segmentation task. Firstly, we joined the similarity connection module into the segmentation network to address the challenges of encoder-decoder architectures mentioned above. This module combined skip connection with local and non-local operations, collected multi-scale feature map to capture long-range spatial information.
Moreover, the proposed Assistant network was verified to improve the performance of discriminator using meaningful feature representations. A consistent transformation strategy was developed in the adversarial training which encouraged a consistent prediction of the segmentation network. Semi-supervised loss was designed according to the discriminators judgment, which limited segmentation network to making approximate prediction between labeled and unlabeled images. The proposed model was employed for skin lesion segmentation [4] and stroke lesion segmentation (Fig 3).
Medical image classification
In medical imaging, the accurate diagnosis or assessment of a disease depends on both image acquisition and image interpretation. Medical image classification can be seen as the core of image interpretation. Generative adversarial network has attracted much attention for medical image classification as it is capable of generating samples without explicitly modeling the probability density function.
It is intelligent for the discriminator to incorporate unlabeled data into the training process by utilizing the adversarial loss. Our team proposed a novel Tensorizing GAN with High-order pooling for medical image classification. Fig. 4 shows the framework of the proposed Tensorizing GAN with High-order pooling. More specifically, the proposed model utilized the compatible learning objects of the three-player cooperative game. Instead of vectorizing each layer as conventional GAN, the tensor-train decomposition was applied to all layers in classifier and discriminator, including fully-connected layers and convolutional layers. Besides, in such a tensor-train format, our model could benefit from the structural information of the object. The proposed model was employed to detect Alzheimers disease [2].
Diabetic retinopathy is one of the major causes of blindness. It is of great significance to apply deep-learning techniques for DR recognition. However, deep-learning algorithms often depend on large amounts of labeled data, which is expensive and time-consuming to obtain in the medical imaging area. To address this issue, we proposed a multichannel-based generative adversarial network (MGAN) with semi-supervision to grade DR [3]. By minimizing the dependence on labeled data, the proposed semi-supervised MGAN could identify the inconspicuous lesion features by using high-resolution fundus images without compression.
Future works:
Finally, we will continue to overcome the challenges of medical image computation so as to:
First, most works still adopt traditional computer vision metrics such as Mean Absolute Error (MAE), Peak-Signal-to-Noise Ratio (PSNR), or Structural Similarity Index Measure (SSIM) for evaluating the quality of synthetic images. The validity of these metrics for medical images remains to be explored. And we will explore some other metrics that are relevant to diagnosis.
Second, deep learning methods have often been described as black boxes. We will focus on the researches about the interpretability of medical image computation.
References:
[1] Hu Shengye, Wang Shuqiang et al. Brain MR to PET Synthesis via Bidirectional Generative Adversarial Network. MICCAI 2020
[2] Lei Baiying, Wang Shuqiang et al. Deep and joint learning of longitudinal data for Alzheimers disease prediction.Pattern Recognition102 (2020): 107247.
[3] Wang Shuqiang, Xiangyu Wang et al., Diabetic Retinopathy Diagnosis using Multi-channel Generative Adversarial Network with Semi-supervision, IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2020.2981637, 2020
[4] Lei Baiying, Wang Shuqiang et al. Skin Lesion Segmentation via Generative Adversarial Networks with Dual Discriminators.Medical Image Analysis(2020): 101716.
About Prof. Shuqiang Wang
Shuqiang Wang is currently an Associate Professor with Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science. He received the Ph.D. degree from the City University of Hong Kong in 2012. He was a Research Scientist with Huawei Technologies Noahs Ark Lab. Before joining the SIAT, he was a Post-Doctoral Fellow with The University of Hong Kong. He has published more than 50 papers on Pattern Recognition, Medical Image Analysis, IEEE Trans on SMC, IEEE Trans on ASE, MICCAI et al. He has applied more than 40 patents of which 15 patents are authorized. His current research interests include machine learning, medical image computing, and optimization theory. As for the medical image computing, He mainly focuses on medical image synthesis, medical segmentation and medical classification. As for the machine learning, he mainly focuses on the GAN theory and its application.
Views expressed in this article do not represent the opinion of Synced Review or its editors.
Synced Report |A Survey of Chinas Artificial Intelligence Solutions in Response to the COVID-19 Pandemic 87 Case Studies from 700+ AI Vendors
This report offers a look at how the Chinese government and business owners have leveraged artificial intelligence technologies in the battle against COVID-19. It is also available onAmazon Kindle.
Clickhereto find more reports from us.
We know you dont want to miss any story.Subscribe to our popularSynced Global AI Weeklyto get weekly AI updates.
Thinking of contributing to Synced Review?Synceds new columnShare My Researchwelcomes scholars to share their own research breakthroughs with global AI enthusiasts.
Like Loading...
Link:
Medical Image Computation and the Application - Synced
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]