A solution given by a predictive model can be more reliable if it gets optimized for being a proper solution to the problem. Different approaches of machine learning are used to build predictive models whereas different approaches of operations research are used to find optimal solutions. The combination of both of these approaches gives such solutions which are not only accurate but also optimal. In this article, we are going to discuss the combination of machine learning and operation research and how it helps in solving specific problems where accurate and optimal solutions are needed. We will also discuss a few notable use cases of this combination. The major points to be covered in this article are listed below.
Table of Contents
What is Operations Research?
Operation research is used as an analytical approach or method which can help in solving problems and making decisions. This decision and problem-solving approach can help in management and benefits of an organization. The basic approach for solving problems using operation research can start with breaking down the problem into basic components and ends with solving those broken parts in defined steps using mathematical analysis.
The overall procedure of operation research can be completed into the following steps:-
Concepts of operation research became very useful for the world during World War II because of the military planner. After the world war, these concepts have become useful in the domain of society, management, and business problems.
Characteristics of Operations Research
There are the following characteristics of a basic operations research procedure:-
Uses of Operations Research
There are a variety of problem and decision-making domains where operations research can be helpful. Some of them are listed below as:
By the above, we can say that the operation research approach is far better than ordinary software and data analytic tools. An experienced person in operation research can benefit an organization to achieve more complete datasets and using all possible outcomes can predict the best solution and estimate the risk.
The above image is a representation of the operation research procedure with its main components. We can say that operation research is a science of optimization using which we can obtain a huge number of improvements in any field. Some of the papers and research are examples of 20-40% of the improvement in the problem-solving domain.
Machine Learning in Operations Research
In the above section, we have an overview of the operation where we have seen how we can find an optimal and best solution to a problem and how we can make decisions using simple steps. When we talk about machine learning we can say the algorithms under machine learning work on the basis of learning from the past histories of the data and information under the data and the main motive of the algorithms is to predict an accurate value that can satisfy the user and perform the task accurately for which model is assigned.
We can say that OR and ML both work on finding the better solution to a problem where models in machine learning can also be used in making decisions. For experienced operation research things become difficult when the set of the solution becomes higher and manually performing the testing of the solutions becomes hectic and time taking. Also with this testing task the experienced need to estimate the risk before applying the solution to the problem of making any decision. Using machine learning we can reduce the time taken by the operation research and the manual iteration between the testing. Hybridization of ML and OR can be considered as the next advancement of operation research where models from machine learning can help in various tasks that come under operation research.
Way to Hybridization of ML and OR
We can perform the hybridization of ML and OR in the following four ways:-
Comparing Operations Research and Machine Learning
Lets go through an example where we are in a city, lets call it Mumbai and we want to travel around Mumbai in an optimal way so that we can cover the most number of locations in a short time and at less cost. So to do this using machine learning we are required to optimize all the possible ways and their times and cost so that the model related to the machine learning can predict an optimal way by considering all the facts in the account. When the same problem comes in the way of operation research it can be thinking of the cost or time or the distance and we can find more than one solution for the problem and after applying them all once we can find an optimal way.
By these procedures of both, we can say that the number of nodes and steps taken by the machine learning algorithms is less than the number of nodes and steps taken by the operation research. We can even say that many of the building blocks of the machine learning models are taken from the operation research procedure. Some of the examples are as follows:
Example of Combination of OR and ML
Lets go through one more example of a road construction company which has got a tender from the government. The task of the company is to repair the road defects. This can be done by the combination of machine learning and operation research where the machine learning models can help in identifying the type of road defects like broken roads in a small area, medium area or large area After that, using the operation research, we can find the beneficial policies for replacement and repairing of the road. This can be a work procedure where the machine learning and operation research is used together for the development. Similarly, there are various domains where we are required to work on both of the technologies for approaching the solution to a problem in a better way.
Solving Problems of ML Using OR
The paradigm of machine learning can be considered as the combination of various domains like sentiment analysis, computer vision, and recommender systems where applying OR with them can help us in various aspects. Also, it can help in solving problems that occur with machine learning. Lets talk about the problems of machine learning and how we can solve it using operation research.
As we know that recommendation systems are becoming more important for a lot of business domains because of their success in providing fruitful recommendations to the user of the business and using these recommendations the owner of the business can make a lot of benefits also they are made using the machine learning procedure where they are used for giving recommendations.
Lets take an example of the restaurant where we have enabled services like online booking and machine learning algorithms are helping in estimating various aspects like eating time of the customer, habits of the customer and customer bookings and recommendation system are installed to provide recommendations to the users according to those attributes of the users. The problem with these instalments comes when the traffic of the customer is very high and the online booking system starts getting confused about the table allotment to the customer.
In such a situation operation research can help in increasing the traffic by managing them and system response time where the work of the operation research procedure can be optimizing the real-time booking, the number of people eating in the real-time, expected number of customers in a particular time. These optimizations can help in simulating the bookings with customer behaviour. This simulation can be done by combining the OR and ML together.
The computer vision algorithms of the machine learning paradigm work on the visual data and one of the main tasks of these algorithms are to classify or identify the images from a given set of images. Lets say we have a computer vision algorithm to track the food demand on a similar restaurant. where a deep learning model is installed with cameras and working for estimating the food wastage and it is working by recognizing the food type and estimating the food demand.
Since we know that pixels of the images will be the main factor in which the classification is dependent and due to distance and size sometimes we face the failure of the deep learning models. An operation research procedure can be enabled with the machine learning or deep learning algorithm, where it can be used for tracking the different matching algorithms between the frames of the image and we can optimize the maximum number of food sold and amount of food wasted.
In the field of sentiment analysis we know we have reached so far in the context of advancement and now many of the systems have become so reliable when we talk about the results that they are producing. One of the major problems with these systems or for making these systems we require a lot of data. And we know it is tough and costly to make such data available for the models. In this scenario, we can use operation research for optimizing data that can be accurate, effective, and cost-effective for the model.
Frequently it happens that the data we gather for modelling is biased by an emotion that can be estimated and tracked by the operation research. When we talk about the NLP system we know that the system cannot autonomously change its emotions and they are also allowed to control them less. Using the operation research we can make them controlled by just optimizing systems behaviour and results.
As we know that the machine learning models are based on the parameters which we need to fit in the models so that using the parameter and the data model be trained to perform the task which is assigned to the model and also we see that before feeding data into the model we require parameters that can help the model to work well with the data. Optimization of the parameters can be done by operation research because we have defined earlier that operation research is a science of optimization. The better fit parameters can be obtained by optimizing the sets of parameters using the operation research techniques.
Use Cases of Combination of ML and OR.
As of now, we have seen various ways and benefits of using the OR and ML together. In this section of the article, we will discuss some real-life use cases of this combination. Since both of them are very relatable to each other many of the big giant companies like google, amazon, etc. are using the combination to obtain a good result and provide customer satisfaction for example:
The above-given examples of real-life use cases of the combination of ML and OR are some major examples that are consistent with the improvement. There can be various examples of this combination and also the only motive is to use the combination to improve the work strength and accuracy and benefit of the organizations.
Final Words
In this article, we have seen what are the basics of operation research and how it can be combined with machine learning. The point to be noted here is that the machine learning models are related and concerned with the one task prediction whereas the operation research is concerned with the large collection of unique methods for specific classes of problems. As we have seen in the examples we can achieve higher accuracy and benefits using the combination of the ML and OR.
Continue reading here:
How Machine Learning is Used with Operations Research? - Analytics India Magazine
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]