Across industries, companies are applying artificial intelligence to their businesses, with mixed results. What separates the AI projects that succeed from the ones that dont often has to do with the business strategies organizations follow when applying AI, writes Wharton professor of operations, information and decisions Kartik Hosanagar in this opinion piece. Hosanagar is faculty director of Wharton AI for Business, a new Analytics at Wharton initiative that will support students through research, curriculum, and experiential learning to investigate AI applications. He also designed and instructs Wharton Onlines Artificial Intelligence for Business course.
While many people perceive artificial intelligence to be the technology of the future, AI is already here. Many companies across a range of industries have been applying AI to improve their businesses from Spotify using machine learning for music recommendations to smart home devices like Google Home and Amazon Alexa. That said, there have also been some early failures, such as Microsofts social-learning chatbot, Tay, which turned anti-social after interacting with hostile Twitter followers, and IBM Watsons inability to deliver results in personalized health care. What separates the AI projects that succeed from the ones that dont often has to do with the business strategies organizations follow when applying AI. The following strategies can help business leaders not only effectively apply AI in their organizations, but succeed in adapting it to innovate, compete and excel.
1. View AI as a tool, not a goal.
One pitfall companies might encounter in the process of starting new AI initiatives is that the concentrated focus and excitement around AI might lead to AI being viewed as a goal in and of itself. But executives should be cautious about developing a strategy specifically for AI, and instead focus on the role AI can play in supporting the broader strategy of the company. A recent report from MIT Sloan Management Review and Boston Consulting Group calls this backward from strategy, not forward from AI.
As such, instead of exhaustively looking for all the areas AI could fit in, a better approach would be for companies to analyze existing goals and challenges with a close eye for the problems that AI is uniquely equipped to solve. For example, machine learning algorithms bring distinct strengths in terms of their predictive power given high-quality training data. Companies can start by looking for existing challenges that could benefit from these strengths, as those areas are likely to be ones where applying AI is not only possible, but could actually disproportionately benefit the business.
The application of machine learning algorithms for credit card fraud detection is one example of where AIs particular strengths make it a very valuable tool in assisting with a longstanding problem. In the past, fraudulent transactions were generally only identified after the fact. However, AI allows banks to detect and block fraud in real time. Because banks already had large volumes of data on past fraudulent transactions and their characteristics, the raw material from which to train machine learning algorithms is readily available. Moreover, predicting whether particular transactions are fraudulent and blocking them in real time is precisely the type of repetitive task that an algorithm can do at a speed and scale that humans cannot match.
2. Take a portfolio approach.
Over the long term, viewing AI as a tool and finding AI applications that are particularly well matched with business strategy will be most valuable. However, I wouldnt recommend that companies pool all their AI resources into a single, large, moonshot project when they are first getting started. Rather, I advocate taking a portfolio approach to AI projects that includes both quick wins and long-term projects. This approach will allow companies to gain experience with AI and build consensus internally, which can then support the success of larger, more strategic and transformative projects later down the line.
Specifically, quick wins are smaller projects that involve optimizing internal employee touch points. For example, companies might think about specific pain points that employees experience in their day-to-day work, and then brainstorm ways AI technologies could make some of these tasks faster or easier. Voice-based tools for scheduling or managing internal meetings or voice interfaces for search are some examples of applications for internal use. While these projects are unlikely to transform the business, they do serve the important purpose of exposing employees, some of whom may initially be skeptics, to the benefits of AI. These projects also provide companies with a low-risk opportunity to build skills in working with large volumes of data, which will be needed when tackling larger AI projects.
The second part of the portfolio approach, long-term projects, is what will be most impactful and where it is important to find areas that support the existing business strategy. Rather than looking for simple ways to optimize the employee experience, long-term projects should involve rethinking entire end-to-end processes and potentially even coming up with new visions for what otherwise standard customer experiences could look like. For example, a long-term project for a car insurance company could involve creating a fully automated claims process in which customers can photograph the damage of their car and use an app to settle their claims. Building systems like this that improve efficiency and create seamless new customer experiences requires technical skills and consensus on AI, which earlier quick wins will help to build.
The skills needed for embarking on AI projects are unlikely to exist in sufficient numbers in most companies, making reskilling particularly important.
3. Reskill and invest in your talent.
In addition to developing skills through quick wins, companies should take a structured approach to growing their talent base, with a focus on both reskilling internal employees in addition to hiring external experts. Focusing on growing the talent base is particularly important given that most engineers in a company would have been trained in computer science before the recent interest in machine learning. As such, the skills needed for embarking on AI projects are unlikely to exist in sufficient numbers in most companies, making reskilling particularly important.
In its early days of working with AI, Google launched an internal training program where employees were invited to spend six months working in a machine learning team with a mentor. At the end of this time, Google distributed these experts into product teams across the company in order to ensure that the entire organization could benefit from AI-related reskilling. There are many new online courses to economically reskill employees in AI.
The MIT Sloan Management Review-BCG report mentioned above also found that, in addition to developing talent in producing AI technologies, an equally important area is that of consuming AI technologies. Managers, in particular, need to have skills to consult AI tools and act on recommendations or insights from these tools. This is because AI systems are unlikely to automate entire processes from the get-go. Rather, AI is likely to be used in situations where humans remain in the loop. Managers will need basic statistical knowledge in order to understand the limitations and capabilities of modern machine learning and to decide when to lean on machine learning models.
4. Focus on the long term.
Given that AI is a new field, it is largely inevitable that companies will experience early failures. Early failures should not discourage companies from continuing to invest in AI. Rather, companies should be aware of, and resist, the tendency to retreat after an early failure.
Historically, many companies have stumbled in their early initiatives with new technologies, such as when working with the internet and with cloud and mobile computing. The companies that retreated, that stopped or scaled back their efforts after initial failures, tended to be in a worse position long term than those that persisted. I anticipate that a similar trend will occur with AI technologies. That is, many companies will fail in their early AI efforts, but AI itself is here to stay. The companies that persist and learn to use AI well will get ahead, while those that avoid AI after their early failures will end up lagging behind.
AI shouldnt be abandoned given that the alternative, human decision-makers, are biased too.
5. Address AI-specific risks and biases aggressively.
Companies should be aware of new risks that AI can pose and proactively manage these risks from the outset. Initiating AI projects without an awareness of these unique risks can lead to unintended negative impacts on society, as well as leave the organizations themselves susceptible to additional reputational, legal, and regulatory risks (as mentioned in my book, A Humans Guide to Machine Intelligence: How Algorithms Are Shaping Our Lives and How We Can Stay in Control).
There have been many recent cases where AI technologies have discriminated against historically disadvantaged groups. For example, mortgage algorithms have been shown to have a racial bias, and an algorithm created by Amazon to assist with hiring was shown to have a gender bias, though this was actually caught by Amazon itself prior to the algorithm being used. This type of bias in algorithms is thought to occur because, like humans, algorithms are products of both nature and nurture. While nature is the logic of the algorithm itself, nurture is the data that algorithms are trained on. These datasets are usually compilations of human behaviors oftentimes specific choices or judgments that human decision-makers have previously made on the topic in question, such as which employees to hire or which loan applications to approve. The datasets are therefore made up of biased decisions from humans themselves that the algorithms learn from and incorporate. As such, it is important to note that algorithms are generally not creating wholly new biases, but rather learning from the historical biases of humans and exacerbating them by applying them on a much larger, and therefore even more damaging, scale.
AI shouldnt be abandoned given that the alternative, human decision-makers, are biased too. Rather, companies should be aware of the kinds of social harms that can result from AI technologies and rigorously audit their algorithms to catch biases before they negatively impact society. Proceeding with AI initiatives without an awareness of these social risks can lead to reputational, legal, and regulatory risks for firms, and most importantly can have extremely damaging impacts on society.
See the article here:
Five Strategies for Putting AI at the Center of Digital Transformation - Knowledge@Wharton
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]