The development of connected and autonomous vehicles (CAVs) is technology-driven and data-centric. Zenzics Roadmap to 2030 highlights that 'the intelligence of self-driving vehicles is driven by advanced features such as artificial intelligence (AI) or machine learning (ML) techniques'.[1] Developers of connected and automated mobility (CAM) technologies are engineering advances in machine learning and machine analysis techniques that can create valuable, potentially life-saving, insights from the massive well of data that is being generated.
Diego Black and Lucy Pegler take a look at the legal and regulatory issues involved in protecting data and innovations in CAVs.
The data of driving
It is predicted that the average driverless car will produce around 4TB of data per day, including data on traffic, route choices, passenger preferences, vehicle performance and many more data points[2].
'Data is foundational to emerging CAM technologies, products and services driving their safety, operation and connectivity'.[3]
As Burges Salmon and AXA UK outlined in their joint report as part of FLOURISH, an Innovate UK-funded CAV project, the data produced by CAVs can be broadly divided into a number of categories based on its characteristics. For example, sensitive commercial data, commercial data, personal data. How data should be protected will depend on its characteristics and importantly, the purposes for which it is used. The use of personal data (i.e. data from which an individual can be identified) attracts particular consideration.
The importance of data to the CAM industry and, in particular, the need to share data effectively to enable the deployment and operation of CAM, needs to be balanced against data protection considerations. In 2018, the Open Data Institute (ODI) published a report setting out that it considered that all journey data is personal data[4] consequently bringing journey data within the scope of the General Data Protection Regulation.[5]
Additionally, the European Data Protection Board (EDPB) has confirmed that the ePrivacy directive (2002/58/EC as revised by 2009/136/EC) applies to connected vehicles by virtue of 'the connected vehicle and every device connected to it [being] considered as a 'terminal equipment'.'[6] This means that any machine learning innovations deployed in CAVs will inevitably process vast amounts of personal data. The UK Information Commissioners Office has issued guidance on how to best deal with harnessing both big data and AI in relation to personal data, including emphasising the need for industry to deploy ethical principles, create ethics boards to monitor the new uses of data and ensure that machine learning algorithms are auditable.[7]
Navigating the legal frameworks that apply to the use of data is complex and whilst the EDPB has confirmed its position in relation to connected vehicles, automated vehicles and their potential use cases raise an entirely different set of considerations. Whilst the market is developing rapidly, use case scenarios for automated mobility will focus on how people consume services. Demand responsive transport and ride sharing are likely to play a huge role in the future of personal mobility.
The main issue policy makers now face is the ever evolving nature of the technology. As new, potentially unforeseen, technologies are integrated into CAVs, the industry will require both a stringent data protection framework on the one hand, and flexibility and accessibility on the other hand. These two policy goals are necessarily at odds with one another, and the industry will need to take a realistic, privacy by design approach to future development, working with rather than against regulators.
Whilst the GDPR and ePrivacy Directive will likely form the building blocks of future regulation of CAV data, we anticipate the development of a complementary framework of regulation and standards that recognises the unique applications of CAM technologies and the use of data.
Cyber security
The prolific and regular nature of cyber-attacks poses risks to both public acceptance of CAV technology and to the underlying business interests of organisations involved in the CAV ecosystem.
New technologies can present threat to existing cyber security measures. Tarquin Folliss of Reliance acsn highlights this noting that 'a CAVs mix of operational and information technology will produce systems complex to monitor, where intrusive endpoint monitoring might disrupt inadvertently the technology underpinning safety'. The threat is even more acute when thinking about CAVs in action and as Tarquin notes, the ability for 'malign actors to target a CAV network in the same way they target other critical national infrastructure networks and utilities, in order to disrupt'.
In 2017, the government announced 8 Key principles of Cyber Security for Connected and Automated Vehicles. This, alongside the DCMS IoT code of practice, the CCAVs CAV code of practice and the BSIs PAS 1885, provides a good starting point for CAV manufacturers. Best practices include:
Work continues at pace on cyber security for CAM. In May this year, Zenzic published its Cyber Resilience in Connected and Automated Mobility (CAM) Cyber Feasibility Report which sets out the findings of seven projects tasked with providing a clear picture of the challenges and potential solutions in ensuring digital resilience and cyber security within CAM.
Demonstrating the pace of work in the sector, in June 2020 the United Nations Economic Commission for Europe (UNECE) published two new UN Regulations focused on cyber security in the automotive sector. The Regulations represent another step-change in the approach to managing the significant cyber risk of an increasingly connected automotive sector.
Protecting innovation
As innovation in the CAV sector increases, issues regarding intellectual property and its protection and exploitation become more important. Companies that historically were not involved in the automotive sector are now rapidly becoming key partners providing expertise in technologies such as IT security, telecoms, block chain and machine learning. In autonomous vehicles many of the biggest patent filers in this area have software and telecoms backgrounds[8].
With the increasing use of in and inter-car connectivity and the accumulative amount of data having to be handled per second as levels of autonomy rises, innovators in the CAV space are having to handle issues regarding data security as well as determining how best to handle the large data sets. Furthermore, the recent UK government call for evidence on automated lane keeping systems is being seen by many as the first step of standards being introduced in autonomous vehicles.
In view of these developments new challenges are now being faced by companies looking to benefit from their innovations. Unlike more traditional automotive innovation where the innovations lay in improvements to engineering and machinery many of the innovations in the CAV space reside in electronics and software development. The ability to protect and exploit inventions in the software space has become increasingly of relevance in the automotive industry.
Multiple Intellectual Property rights exist that can be used to protect innovations in CAVs. Some rights can be particularly effective in areas of technology where standards exist, or are likely to exist. Two of the main ways seen at present are through the use of patents and trade secrets. Both can be used in combination, or separately, to provide an effective IP strategy. Such an approach is seen in other industries such as those involved in data security.
For companies that are developing or improving machine learning models, or training sets, the use of trade secrets is particularly common. Companies relying on trade secrets may often license access to, or sell the outputs of, their innovations. Advantageously, trade secrets are free and last indefinitely.
An effective strategy in such fields is to obtain patents that cover the technological standard. By definition if a third party were to adhere to the defined standard, they would necessarily fall within the scope of the patent, thus providing the owner of the patent with a potential revenue stream through licensing agreements. If, as anticipated, standards will be set in CAVs any company that can obtain patents to cover the likely standard will be at an advantage. Such licenses are typically offered under a fair, reasonable and non-discriminatory (FRAND) basis, to ensure that companies are not prevented by patent holders from entering the market.
A key consideration is that the use of trade secrets may be incompatible with the use of standards. If technology standards are introduced for autonomous vehicles, in order to comply with the standards companies would have to demonstrate that their technology complies with the standard. The use of trade secrets may be incompatible with the need to demonstrate compliance with a standard.
However, whilst a patent provides a stronger form of protection in order to enforce a patent the owner must be able to demonstrate a third party is performing the acts as defined in the patent. In the case of machine learning and mathematical-based methods such information is often kept hidden making providing infringement difficult. As a result patents in such areas are often directed towards a visible, or tangible, output. For example in CAVs this may be the control of a vehicle based on the improvements in the machine learning. Due to the difficulty in demonstrating infringement, many companies are choosing to protect their innovations with a mixture of trade secrets and patents.
Legal protections for innovations
For the innovations typically seen in the software side of CAVs, trade secrets and patents are the two main forms of protection.
Trade secrets are, as the name implies, where a company will keep all, or part of, their innovation a secret. In software-based inventions this may be in form of a black-box disclosure where the workings and functionality of the software are kept secret. However, steps do need to be taken to keep the innovation secret, and they do not prevent a third party from independently implementing, or reverse engineering, the innovation. Furthermore, once a trade secret is made public, the value associated with the trade secret is gone.
Patents are an exclusive right, lasting up to 20 years, which allow the holder to prevent, or request a license from, a third party utilising the technology that is covered by the scope of the patent in that territory. Therefore it is not possible to enforce say, a US patent in the UK. Unlike trade secrets publication of patents is an important part of the process.
In order for inventions to be patented they must be new (that is to say they have not been disclosed anywhere in the world before), inventive (not run-of-the-mill improvements), and concern non-excluded subject matter. The exclusions in the UK and Europe cover software, and mathematical methods, amongst other fields, as such. In the case of CAVs a large number of inventions are developed that could fall in the software and mathematical methods categories.
The test regarding whether or not an invention may be seen as excluded subject matter varies between jurisdictions. In Europe if an invention is seen to solve a technical problem, for example relating to the control of vehicles it would be deemed allowable. Many of the innovations in CAVs can be tied to technical problems relating to, for example, the control of vehicles or improvements in data security. As such on the whole CAV inventions may escape the exclusions.
What does the future hold?
Technology is advancing at a rapid rate. At the same time as industry develops more and more sophisticated software to harness data, bad actors gain access to more advanced tools. To combat these increased threats, CAV manufacturers need to be putting in place flexible frameworks to review and audit their uses of data now, looking toward the developments of tomorrow to assess the data security measures they have today. They should also be looking to protect some of their most valuable IP assets from the outset, including machine learning developments in a way that is secure and enforceable.
See original here:
Connected and autonomous vehicles: Protecting data and machine learning innovations - Lexology
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]