Buying a Picasso is like buying a mansion.
Theres not that many of them, so it can be hard to know what a fair price should be. In real estate, if the house last sold in 2008 right before the lending crisis devastated the real estate market basing todays price on the last sale doesnt make sense.
Paintings are also affected by market conditions and a lack of data. Kyle Waters, a data scientist at Artnome, explained to us how his Boston-area firm is addressing this dilemma and, in doing so, aims to do for the art world what Zillow did for real estate.
If only 3 percent of houses are on the market at a time, we only see the prices for those 3 percent. But what about the rest of the market? Waters said. Its similar for art too. We want to price the entire market and give transparency.
We want to price the entire market and give transparency.
Artnome is building the worlds largest database of paintings by blue-chip artists like Georgia OKeeffe, including her super-famous works, lesser-known items, those privately heldand artworks publicly displayed. Waters is tinkering with the data to create a machine learning model that predicts how much people will pay for these works at auctions. Because this model includes an artists entire collection, and not just those works that have been publicly sold before, Artnome claims its machine learning model will be more accurate than the auction industrys previous practice of simply basing current prices on previous sales.
The companys goal is to bring transparency to the auction house industry. But Artnomes new model faces the old problem: Its machine learning system performs poorly on the works that typically sell for the most the ones that people are the most interested in since its hard to predict the price of a one-of-a-kind masterpiece.
With a limited data set, its just harder to generalize, Waters said.
We talked to Waters about how he compiled, cleaned and created Artnomes machine learning model for predicting auction prices, which launched in late January.
Most of the information about artists included in Artnomes model comes from the dusty basement libraries of auction houses, where they store their catalog raissons, which are books that serve as complete records of an artists work. Artnome is compiling and digitizing these records representing the first time these books have ever been brought online, Waters said.
Artnomes model currently includes information from about 5,000 artists whose works have been sold over the last 15 years. Prices in the data set range from $100 at the low end to Leonardo DaVincis record-breaking Salvator Mundi a painting thatsold for $450.3 million in 2017, making it the most expensive work of art ever sold.
How hard was it to predict what DaVincis 500-year-old Mundi would sell for? Before the sale, Christies auction house estimated his portrait of Jesus Christ was worth around $100 million less than a quarter of the price.
It was unbelievable, Alex Rotter, chairman of Christies postwar and contemporary art department, told The Art Newspaper after the sale. Rotter reported the winning phone bid.
I tried to look casual up there, but it was very nerve-wracking. All I can say is, the buyer really wanted the painting and it was very adrenaline-driven.
The buyer really wanted the painting and it was very adrenaline-driven.
A piece like Salvatore Mundi could come to market in 2017 and then not go up for auction again for 50 years. And because a machine learning model is only as good as the quality and quantity of the data it is trained on, market, condition and changes in availability make it hard to predict a future price for a painting.
These variables are categorized into two types of data: structured and unstructured. And cleaning all of it represents a major challenge.
Structured data includes information like what artist painted which painting on what medium, and in whichyear.
Waters intentionally limited the types of structured information he included in the model to keep the system from becoming too unruly to work with. But defining paintings as solely two-dimensional works on only certain mediums proved difficult, since there are so many different types of paintings (Salvador Dali famously painted on a cigar box, after all). Artnomes problem represents an issue of high cardinality, Waters said, since there are so many different categorical variables he could include in the machine learning system.
You want the model to be narrow enough so that you can figure out the nuances between really specific mediums, but you also dont want it to be so narrow that youre going to overfit.
You want the model to be narrow enough so that you can figure out the nuances between really specific mediums, but you also dont want it to be so narrow that youre going to overfit, Waters said, adding that large models also become more unruly to work with.
Other structured data focuses on the artist herself, denoting details like when the creator was born or if they were alive during the time of auction. Waters also built a natural language processing system that analyzes the type and frequency of the words an artist used in her paintings titles, noting trends like Georgia OKeeffe using the word white in many of her famous works.
Including information on market conditions, like current stock prices or real estate data, was important from a structured perspective too.
How popular is an artist, are they exhibiting right now? How many people are interested in this artist? Whats the state of the market? Waters said. Really getting those trends and quantifying those could be just as important as more data.
Another type of data included in the model is unstructured data which, as the name might suggest, is a little less concrete than the structured items. This type of data is mined from the actual painting, and includes information like the artworks dominant color, number of corner points and if faces are pictured.
Waters created a pre-trained convolutional neural network to look for these variables, modeling the project after the ResNet 50 model, which famously won the ImageNet Large Scale Visual Recognition Challenge in 2012 after it correctly identified and classified nearly all of the 14 billion objects featured.
Including unstructured data helps quantify the complexity of an image, Waters said, giving it what he called an edge score.
An edge score helps the machine learning system quantify the subjective points of a painting thatseem intuitive to humans, Waters said. An example might be Vincent Van Goghs series of paintings of red-haired men posing in front of a blue background. When youre looking at the painting, its not hard to see youre looking at self portraits of Van Gogh, by Van Gogh.
Including unstructured data in Artnomes system helps the machine spot visual cues that suggest images are part of a series, which has an impact on their value, Waters said.
When you start interacting with different variables, then you can start getting into more granular details.
Knowing that thats a self-portrait would be important for that artist, Waters said. When you start interacting with different variables, then you can start getting into more granular details that, for some paintings by different artists, might be more important than others.
Artnomes convoluted neural network is good at analyzing paintings for data that tells a deeper story about the work. Butsometimes, there are holes inthe story being told.
In its current iteration, Artnomes model includes both paintings with and without frames it doesnt specify which work falls into which category. Not identifying the frame could affect the dominant color the system discovers, Waters said, adding an error to its results.
That could maybe skew your results and say, like, the dominant color was yellow when really the painting was a landscape and it was green, Waters said.
Interested in convolutional neural networks?Convolutional Neural Networks Explained: From Pytorch to CNN
The model also lacks information on the condition of the painting, which, again, could impact the artworks price. If the model cant detect a crease in the painting, it might overestimate its value. Also missing is data on an artworks provenance, or its ownership history. Some evidence suggests that paintings that have been displayed by prominent institutions sell for more. Theres also the issue of popularity. Waters hasnt found a concrete way to tell the system that people like the work of OKeeffe more than the paintings by artist and actor James Franco.
Im trying to think of a way to come up with a popularity score for these very popular artists, Waters said.
An auctioneer hits the hammer to indicate a sale has been made. But the last price the bidder shouts isnt what theyactually pay.
Buyers also must pay the auction house a commission, which varies between auction houses and has changed over time. Waters has had to dig up the commission rates for these outlets over the years and add them to the sales price listed. Hes also had to make sure all sales prices are listed in dollars, converting those listed in other currencies. Standardizing each sale ensures the predictions the model makes are accurate, Waters said.
Youd introduce a lot of bias into the model if some things didnt have the commission, but some things did.
Youd introduce a lot of bias into the model if some things didnt have the commission, but some things did, Waters said. It would be clearly wrong to start comparing the two.
Once Artnomes data has been gleaned and cleaned, information is input into the machine learning system, which Waters structured into a random forest model, an algorithm that builds and merges multiple decision trees to arrive at an accurate prediction. Waters said using a random forest model keeps the system from overfitting paintings into one category, and also offers a level of explainability through its permutation score a metric that basically decides the most important aspects of a painting.
Waters doesnt weigh the data he puts into the model. Instead, he lets the machine learning system tell him whats important, with the model weighing factors like todays S&P prices more heavily than the dominant color of a work.
Thats kind of one way to get the feature importance, for kind of a black box estimator, Waters said.
Although Artnome has been approached by private collectors, gallery owners and startups in the art tech world interested in its machine learning system, Waters said its important this data set and model remain open to the public.
His aim is for Artnomes machine learning model to eventually function like Zillows Zestimate, which estimates real estate prices for homes on and off the market, and act as a general starting point for those interested in finding out the price of an artwork.
When it gets to the point where people see it as a respectable starting point, then thats when Ill be really satisfied.
We might not catch a specific genre, or era, or point in the art history movement, Waters said. I dont think itll ever be perfect. But when it gets to the point where people see it as a respectable starting point, then thats when Ill be really satisfied.
Want to learn more about machine learning? A Tour of the Top 10 Algorithms for Machine Learning Newbies
More here:
Artnome Wants to Predict the Price of a Masterpiece. The Problem? There's Only One. - Built In
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Synthesis-planning program relies on human insight and machine learning - Chemical & Engineering News [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: December 1st, 2019] [Originally Added On: December 1st, 2019]
- Onica Showcases Advanced Internet of Things, Artificial Intelligence, and Machine Learning Capabilities at AWS re:Invent 2019 - PR Web [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 3rd, 2019] [Originally Added On: December 3rd, 2019]
- Amazons new AI keyboard is confusing everyone - The Verge [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Exploring the Present and Future Impact of Robotics and Machine Learning on the Healthcare Industry - Robotics and Automation News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 5th, 2019] [Originally Added On: December 5th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- The NFL And Amazon Want To Transform Player Health Through Machine Learning - Forbes [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Scientists are using machine learning algos to draw maps of 10 billion cells from the human body to fight cancer - The Register [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Appearance of proteins used to predict function with machine learning - Drug Target Review [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Google is using machine learning to make alarm tones based on the time and weather - The Verge [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- 10 Machine Learning Techniques and their Definitions - AiThority [Last Updated On: December 11th, 2019] [Originally Added On: December 11th, 2019]
- Taking UX and finance security to the next level with IBM's machine learning - The Paypers [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Government invests 49m in data analytics, machine learning and AI Ireland, news for Ireland, FDI,Ireland,Technology, - Business World [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Bing: To Use Machine Learning; You Have To Be Okay With It Not Being Perfect - Search Engine Roundtable [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- IQVIA on the adoption of AI and machine learning - OutSourcing-Pharma.com [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Schneider Electric Wins 'AI/ Machine Learning Innovation' and 'Edge Project of the Year' at the 2019 SDC Awards - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Industry Call to Define Universal Open Standards for Machine Learning Operations and Governance - MarTech Series [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Qualitest Acquires AI and Machine Learning Company AlgoTrace to Expand Its Offering - PRNewswire [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Automation And Machine Learning: Transforming The Office Of The CFO - Forbes [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- Machine learning results: pay attention to what you don't see - STAT [Last Updated On: December 12th, 2019] [Originally Added On: December 12th, 2019]
- The challenge in Deep Learning is to sustain the current pace of innovation, explains Ivan Vasilev, machine learning engineer - Packt Hub [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Israelis develop 'self-healing' cars powered by machine learning and AI - The Jerusalem Post [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Theres No Such Thing As The Machine Learning Platform - Forbes [Last Updated On: December 15th, 2019] [Originally Added On: December 15th, 2019]
- Global Contextual Advertising Markets, 2019-2025: Advances in AI and Machine Learning to Boost Prospects for Real-Time Contextual Targeting -... [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Tech connection: To reach patients, pharma adds AI, machine learning and more to its digital toolbox - FiercePharma [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- MJ or LeBron Who's the G.O.A.T.? Machine Learning and AI Might Give Us an Answer - Built In Chicago [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Deep Learning? Everything you need to know - TechRadar [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- QStride to be acquired by India-based blockchain, analytics, machine learning consultancy - Staffing Industry Analysts [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Dotscience Forms Partnerships to Strengthen Machine Learning - Database Trends and Applications [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- The Machines Are Learning, and So Are the Students - The New York Times [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Data science and machine learning: what to learn in 2020 - Packt Hub [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: December 20th, 2019] [Originally Added On: December 20th, 2019]
- Want to dive into the lucrative world of deep learning? Take this $29 class. - Mashable [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 24th, 2019] [Originally Added On: December 24th, 2019]
- Ten Predictions for AI and Machine Learning in 2020 - Database Trends and Applications [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- The Value of Machine-Driven Initiatives for K12 Schools - EdTech Magazine: Focus on Higher Education [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Machine Learning Market Accounted for US$ 1,289.5 Mn in 2016 and is expected to grow at a CAGR of 49.7% during the forecast period 2017 2025 - The... [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- Dr. Max Welling on Federated Learning and Bayesian Thinking - Synced [Last Updated On: December 28th, 2019] [Originally Added On: December 28th, 2019]
- 2010 2019: The rise of deep learning - The Next Web [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Machine Learning Answers: Sprint Stock Is Down 15% Over The Last Quarter, What Are The Chances It'll Rebound? - Trefis [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Sports Organizations Using Machine Learning Technology to Drive Sponsorship Revenues - Sports Illustrated [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- What is deep learning and why is it in demand? - Express Computer [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Byrider to Partner With PointPredictive as Machine Learning AI Partner to Prevent Fraud - CloudWedge [Last Updated On: January 4th, 2020] [Originally Added On: January 4th, 2020]
- Stare into the mind of God with this algorithmic beetle generator - SB Nation [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- US announces AI software export restrictions - The Verge [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- How AI And Machine Learning Can Make Forecasting Intelligent - Demand Gen Report [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Fighting the Risks Associated with Transparency of AI Models - EnterpriseTalk [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- NXP Debuts i.MX Applications Processor with Dedicated Neural Processing Unit for Advanced Machine Learning at the Edge - GlobeNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Cerner Expands Collaboration with Amazon Web as its Preferred Machine Learning Provider - Story of Future [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Can We Do Deep Learning Without Multiplications? - Analytics India Magazine [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Machine learning is innately conservative and wants you to either act like everyone else, or never change - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- FLIR Systems and ANSYS to Speed Thermal Camera Machine Learning for Safer Cars - Business Wire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- SiFive and CEVA Partner to Bring Machine Learning Processors to Mainstream Markets - PRNewswire [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI, machine learning, and other frothy tech subjects remained overhyped in 2019 - Boing Boing [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- Chemists are training machine learning algorithms used by Facebook and Google to find new molecules - News@Northeastern [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: January 7th, 2020] [Originally Added On: January 7th, 2020]