Artificial Intelligence to Improve Resolution of Brain Magnetic Resonance Imaging – Lab Manager Magazine

The method, designed by researchers of the UMA, enables the detection of pathologies with increased accuracy and definition, without additional tests.University of Malaga

Researchers of the ICAI GroupComputational Intelligence and Image Analysisof the University of Malaga (UMA) have designed an unprecedented method that is capable of improving brain images obtained through magnetic resonance imaging using artificial intelligence.

This new model manages to increase image quality from low resolution to high resolution without distorting the patients' brain structures, using a deep learning artificial neural networka model that is based on the functioning of the human brainthat "learns" this process.

"Deep learning is based on very large neural networks, and so is its capacity to learn, reaching the complexity and abstraction of a brain", explains researcher Karl Thurnhofer, main author of this study, who adds that, thanks to this technique, the activity of identification can be performed alone, without supervision; an identification effort that the human eye would not be capable of doing.

Researchers of the ICAI GroupComputational Intelligence and Image Analysisof the University of Malaga (UMA) have designed an unprecedented method that is capable of improving brain images obtained through magnetic resonance imaging using artificial intelligence.Credit: University of Malaga

Published in the scientific journalNeurocomputing, this study represents a scientific breakthrough, since the algorithm developed by the UMA yields more accurate results in less time, with clear benefits for patients. "So far, the acquisition of quality brain images has depended on the time the patient remained immobilized in the scanner; with our method, image processing is carried out later on the computer," explains Thurnhofer.

According to the experts, the results will enable specialists to identify brain-related pathologies, like physical injuries, cancer or language disorders, among others, with increased accuracy and definition, because image details are thinner, thus avoiding the performance of additional tests when diagnoses are uncertain.

Nowadays, the ICAI Group of the UMA, led by professor Ezequiel Lpez, co-author of this study, is a benchmark for neurocomputing, computational learning and artificial intelligence. Enrique Domnguez and Rafael Luque, both professors in the Department of Computer Science and Programming Languages, as well as researcher Nria Ro-Vellv, also participated in this study.

Like this article? Click here to subscribe to free newsletters from Lab Manager

Read the rest here:
Artificial Intelligence to Improve Resolution of Brain Magnetic Resonance Imaging - Lab Manager Magazine

Related Posts
This entry was posted in $1$s. Bookmark the permalink.