Why study plants in space?

Posted: December 4, 2012 at 1:49 pm

Samples from the Seedling Growth investigation aboard the International Space Station help researchers study the impact of the microgravity environment on plant growth. Credit: NASA

(Phys.org)Why is NASA conducting plant research aboard the International Space Station? Because during future long-duration missions, life in space may depend on it.

The ability of plants to provide a source of food and recycle carbon dioxide into breathable oxygen may prove critical for astronauts who will live in space for months at a time. In addition, plants provide a sense of well-being. At the McMurdo Station for research in Antarcticaa site that in the dead of winter resembles the space station in its isolation, cramped quarters, and hostile environmentthe most sought after section of the habitat is the greenhouse.

NASA and the European Space Agency, or ESA, are studying how plants adapt to micro- and low-gravity environments in a series of experiments designed to determine the ability of vegetation to provide a complete, sustainable, dependable and economical means for human life support in space. As researchers continue to gain new knowledge of how plants grow and develop at a molecular level, this insight also may lead to significant advances in agriculture production on Earth.

Plant biology experiments on the space station using the European Modular Cultivation System, or EMCS, allow scientists to investigate plant growth and the processes within their cells to understand how plant life responds to conditions in space. Researchers currently are planning three new plant growth investigations specifically designed to examine the growth of seedlings in microgravity using this facility.

Combining the proposals of NASA Principal Investigator John Z. Kiss, and ESA Principal Investigator Javier Medina, the Seedling Growth investigation will continue at the space station for a series of experiments: Seedling Growth 1, 2 and 3 in 2013, 2014 and 2015 respectively. The results of these experiments will help researchers understand how plants sense and respond to the space environment.

Enlarge

View of the TROPI seedling cassette for the European Modular Cultivation System, or EMCS, aboard the International Space Station Destiny laboratory module during Expedition 14. Credit: NASA

Thus far, NASA's Ames Research Center, Moffett Field, Calif., has completed three experiments using the EMCS. The 2006 study called Root Phototropism, or Tropi, used Thale cress (Arabidopsis thaliana) seeds from the mustard family to investigate how plant roots respond to varying levels of light and gravity. Using a rotating centrifuge, Kiss designed the experiment to expose the plants to different gravity conditions.

In 2010, the Tropi-2 experiment expanded on the knowledge gained from the first Tropi investigation. Collectively, the two studies demonstrated how red and blue light affects plant growth differently at varied levels of gravity. With this information, researchers now know that they can optimize plant root and shoot growth in space by fine-tuning the plants' exposure to light.

See the article here:
Why study plants in space?

Related Posts