Partial convergence of the human vaginal and rectal maternal … – Nature.com

Posted: June 18, 2023 at 1:03 pm

Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

Article PubMed PubMed Central Google Scholar

Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 1197111975 (2010).

Article PubMed PubMed Central Google Scholar

Wampach, L. et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat. Commun. 9, 5091 (2018).

Article PubMed PubMed Central Google Scholar

Song, S. J. et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2, 951964.e955 (2021).

Article CAS PubMed Google Scholar

Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117121 (2019).

Article CAS PubMed PubMed Central Google Scholar

Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med 4, 132ra152 (2012).

Article Google Scholar

Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470480 (2012).

Article CAS PubMed PubMed Central Google Scholar

Romero, R. et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2, 4 (2014).

Article PubMed PubMed Central Google Scholar

DiGiulio, D. B. et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 1106011065 (2015).

Article CAS PubMed PubMed Central Google Scholar

MacIntyre, D. A. et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 5, 8988 (2015).

Article CAS PubMed PubMed Central Google Scholar

Bisanz, J. E. et al. Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of Moringa-supplemented probiotic yogurt. Appl Environ. Microbiol 81, 49654975 (2015).

Article CAS PubMed PubMed Central Google Scholar

Huang, Y. E. et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Micro. Ecol. 69, 407414 (2015).

Article Google Scholar

Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med 8, 343ra382 (2016).

Article Google Scholar

Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 45784585 (2011).

Article CAS PubMed Google Scholar

Standring, S. Grays Anatomy: the Anatomical Basis of Clinical Practice. 12611266 (Elsevier, 2016).

Romero, R. et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome 2, 18 (2014).

Article PubMed PubMed Central Google Scholar

Serrano, M. G. et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat. Med 25, 10011011 (2019).

Article CAS PubMed PubMed Central Google Scholar

Dominguez-Bello, M. G. Gestational shaping of the maternal vaginal microbiome. Nat. Med 25, 882883 (2019).

Article CAS PubMed Google Scholar

Borgdorff, H. et al. Unique insights in the cervicovaginal Lactobacillus iners and L. crispatus proteomes and their associations with microbiota dysbiosis. PLoS ONE 11, e0150767 (2016).

Article PubMed PubMed Central Google Scholar

Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133145.e135 (2018).

Article CAS PubMed PubMed Central Google Scholar

Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250253 (2016).

Article CAS PubMed PubMed Central Google Scholar

Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell, https://doi.org/10.1016/j.cell.2020.08.047 (2020).

Romano-Keeler, J. & Weitkamp, J. H. Maternal influences on fetal microbial colonization and immune development. Pediatr. Res 77, 189195 (2015).

Article PubMed Google Scholar

Hemberg, E. et al. Occurrence of bacteria and polymorphonuclear leukocytes in fetal compartments at parturition; relationships with foal and mare health in the peripartum period. Theriogenology 84, 163169 (2015).

Article CAS PubMed Google Scholar

Verstraelen, H. et al. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 9, 116 (2009).

Article PubMed PubMed Central Google Scholar

Zheng, N., Guo, R., Wang, J., Zhou, W. & Ling, Z. Contribution of Lactobacillus iners to vaginal health and diseases: a systematic review. Front. Cell. Infect. Microbiol. 11, 792787 (2021).

Article CAS PubMed PubMed Central Google Scholar

Nelson, D. B., Bellamy, S., Gray, T. S. & Nachamkin, I. Self-collected versus provider-collected vaginal swabs for the diagnosis of bacterial vaginosis: an assessment of validity and reliability. J. Clin. Epidemiol. 56, 862866 (2003).

Article PubMed Google Scholar

Forney, L. J. et al. Comparison of self-collected and physician-collected vaginal swabs for microbiome analysis. J. Clin. Microbiol 48, 17411748 (2010).

Article CAS PubMed PubMed Central Google Scholar

Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 110 (1992).

Article Google Scholar

Anderson, M. A new method for nonparametric multivariate analysis of variance. Aust. Ecol. 26, 3246 (2001).

Google Scholar

Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852857 (2019).

Article CAS PubMed PubMed Central Google Scholar

Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581583 (2016).

Article CAS PubMed PubMed Central Google Scholar

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 30593066 (2002).

Article CAS PubMed PubMed Central Google Scholar

Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

Article PubMed PubMed Central Google Scholar

Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

Article PubMed PubMed Central Google Scholar

Yilmaz, P. et al. The SILVA and All-species Living Tree Project (LTP) taxonomic frameworks. Nucleic Acids Res. 42, D643D648 (2014).

Article CAS PubMed Google Scholar

NonSegata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

Article Google Scholar

Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).

Article CAS PubMed PubMed Central Google Scholar

Bokulich, N. A. et al. q2-sample-classifier: machine-learning tools for microbiome classification and regression. J. Open Res. Softw. 3, https://doi.org/10.21105/joss.00934 (2018).

Breiman, L. Random forests. Mach. Learn. 45, 532 (2001).

Article Google Scholar

Follow this link:
Partial convergence of the human vaginal and rectal maternal ... - Nature.com

Related Posts