COVID-19 symptoms are reduced by targeted hydration of the nose, larynx and trachea | Scientific Reports – Nature.com

Posted: March 29, 2022 at 1:26 pm

Mallah, S. L. et al. COVID-19: Breaking down a global health crisis. Ann. Clin. Microbiol. Antimicrob. 20(1), 35 (2021).

CAS PubMed PubMed Central Google Scholar

Josephson, A., Kilic, T. & Michler, J. D. Socioeconomic impacts of COVID-19 in low-income countries. Nat. Hum. Behav. 5, 557565 (2021).

PubMed Google Scholar

De Pue, S. et al. The impact of the COVID-19 pandemic on wellbeing and cognitive functioning of older adults. Sci. Rep. 11, 4636 (2021).

ADS PubMed PubMed Central Google Scholar

Trabelsi, K. et al. Sleep quality and physical activity as predictors of mental wellbeing variance in older adults during COVID-19 lockdown: ECLB COVID-19 international online survey. Int. J. Environ. Res. Public Health 18(8), 4329. https://doi.org/10.3390/ijerph18084329 (2021).

Article PubMed PubMed Central Google Scholar

Mallapaty, S. et al. How COVID vaccines shaped 2021 in eight powerful charts. Nature 600, 580583 (2021).

ADS CAS PubMed Google Scholar

Sriram, K. et al. Beyond vaccines: Clinical status of prospective COVID-19 therapeutics. Front. Immunol. https://doi.org/10.3389/fimmu.2021.752227 (2021).

Article PubMed PubMed Central Google Scholar

Jensen, N., Kelly, A. H. & Avendano, M. The COVID-19 pandemic underscores the need for an equity-focused global health agenda. Hum. Soc. Sci. Commun. 8, 15. https://doi.org/10.1057/s41599-020-00700-x (2021).

Article Google Scholar

Troeger, C., Blacker, B. F. & Khalil, I. A. Respiratory disease number 1 killer Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 19902016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 18(11), P1191-1210 (2018).

Google Scholar

Edwards, D. A. et al. Hydration for clean air today. Mol. Front. J. https://doi.org/10.1142/S252973252101001X (2021).

Article Google Scholar

Ghosh, A., Boucher, R. C. & Tarran, R. Airway hydration and COPD. Cell Mol. Life Sci. 72(19), 36373652 (2015).

CAS PubMed PubMed Central Google Scholar

Moriyama, M., Hugentobler, W. J. & Iwasaki, A. Seasonality of respiratory infections. Annu. Rev. Virol. 7(1), 8391 (2021).

Google Scholar

Lauc, G., Markoti, A., Gornik, I. & Primorac, D. Fighting COVID-19 with water. J. Glob. Health 10, 010344 (2020).

PubMed PubMed Central Google Scholar

Chumlea, W. C., Guo, S. S., Zeller, C. M., Reo, N. V. & Siervogel, R. M. Total body water data for white adults 18 to 64 years of age: The Fels Longitudinal Study. Kidney Int. 56, 244252 (1999).

CAS PubMed Google Scholar

Ritz, P. et al. Influence of gender and body composition on hydration and body water spaces. Clin. Nutr. 27, 740746 (2008).

CAS PubMed Google Scholar

Stookey, J. D., Allu, P. K. R., Chabas, D., Pearce, D. & Lang, F. Hypotheses about sub-optimal hydration in the weeks before coronavirus disease (COVID-19) as a risk factor for dying from COVID-19. Med. Hypotheses. 144, 110237 (2020).

CAS PubMed PubMed Central Google Scholar

Fronius, M., Clauss, W. G. & Althaus, M. Why do we have to move fluid to be able to breathe. Front. Physiol. 3, 146 (2012).

CAS PubMed PubMed Central Google Scholar

Hou, Y. J. et al. SARS-CoV2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429446 (2020).

CAS PubMed PubMed Central Google Scholar

Zieliski, J. & Przybylski, J. How much water is lost during breathing?. Pneumonol. Alergol. Pol. 80(3), 339342 (2012).

PubMed Google Scholar

DAmato, M. et al. The impact of cold on the respiratory tract and its consequences to respiratory health. Clin. Transl. Allergy 8, 18 (2018).

Google Scholar

Kudo, E. et al. Low ambient humidity impairs barrier function and innate resistance against influenza infection. PNAS 116, 1090510910 (2019).

CAS PubMed PubMed Central Google Scholar

Barbet, J. P., Chauveau, M., Labbe, S. & Lockhart, A. Breathing dry air causes acute epithelial damage and inflammation of the guinea pig trachea. J. Appl. Physiol. 64, 18511857 (1988).

CAS PubMed Google Scholar

Wolkoff, P. The mystery of dry indoor air: An overview. Environ. Int. 121(2), 10581065 (2018).

PubMed Google Scholar

Romaszko-Wojtowicz, A. et al. Relationship between biometeorological factors and the number of hospitalizations due to asthma. Sci. Rep. 10, 9593 (2020).

ADS PubMed PubMed Central Google Scholar

Kudo, E. et al. Influenza worsens dry air Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc. Natl. Acad. Sci. USA 116(22), 1090510910 (2019).

CAS PubMed PubMed Central Google Scholar

Mecenas, P., Bastos, R., Vallinoto, A. & Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE 15(9), e0238339 (2020).

CAS PubMed PubMed Central Google Scholar

Rosen, C. & Simpson, C. Operative Techniques in Laryngology (Springer-Verlag, 2008).

Google Scholar

Finck, C. & Lejeune, L. Structure and oscillatory function of the vocal folds. In Handbook of Behavioral Neuroscience Vol. 19 (ed. Brudzynski, S. M.) 427438 (Elsevier, 2010).

Google Scholar

Zhuang, P. et al. Measurement of phonation threshold power in normal and disordered voice production. Ann. Otol. Rhinol. Laryngol. 122(9), 555560 (2013).

PubMed PubMed Central Google Scholar

Finklehor, B. K., Titze, I. R. & Durham, P. L. The effect of viscosity changes in the vocal folds on the range of oscillation. J. Voice 1, 320325 (1988).

Google Scholar

Sasaki, C. & Weaver, M. Physiology of the larynx. Am. J. Med. 103(5), 9S-18S (1997).

CAS PubMed Google Scholar

Scheinherr, A. Glottal Motion and Its Impact on Airflow and Aerosol Deposition in Upper Airways During Human Breathing. PhD Thesis, Fluids mechanics/Physics. Ecole Centrale Marseille (2015).

Sivasankar, M. & Leyden, C. The role of hydration in vocal fold physiology. Curr. Opin. Otolaryngol. Head Neck Surg. 18(3), 171175 (2010).

PubMed PubMed Central Google Scholar

Van Hirtum, A., Bouvet, A. & Pelorson, X. Pressure drop for adiabatic air-water flow through a time-varying constriction. Phys Fluids 30, 101901 (2018).

ADS Google Scholar

Bouvet, A., Pelorson, X. & van Hirtum, A. Influence of water spraying on an oscillating channel. J. Fluids Struct. 93, 102840 (2020).

ADS Google Scholar

Xi, J., Longest, W. & Martonin, T. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl Phys. 104, 17611777 (2008).

Google Scholar

Xi, J., Si, A., Dong, H. & Zhong, H. Effects of glottis motion on airflow and energy expenditure in a human upper airway model. Eur. J. Mech. B 72, 2337 (2018).

ADS MathSciNet MATH Google Scholar

Peng, C.-A., Jurman, L. & McCready, M. Formation of solitary waves on gas-sheared liquid layers. Int. J. Multiph. Flow 17(6), 767782 (1991).

CAS MATH Google Scholar

Watanabe, W. & Why, W. inhaling salt water changes what we exhale. J. Colloid Interface Sci. 307(1), 7178 (2007).

ADS CAS PubMed Google Scholar

Stadnytskyi, V., Anfinruud, P. & Bax, A. Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2?. J. Int. Med. 290, 10101027 (2021).

CAS Google Scholar

Scheuch, G. Breathing is enough: For the spread of influenza virus and SARS-CoV-2 by breathing only. J. Aerosol Med. Pulm. Drug Deliv. 33(4), 230234 (2020).

CAS PubMed PubMed Central Google Scholar

Field, R. et al. Moisture and airborne salt suppress respiratory droplet generation and may reduce COVID-19 incidence and death. Mol. Front. J. 5, 110 (2021).

Google Scholar

Calmet, H. et al. Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions. PLoS ONE 14(9), e0221330 (2019).

CAS PubMed PubMed Central Google Scholar

Alves, M., Kruger, E., Pillay, B., van Lierde, K. & van der Linde, J. The effect of hydration on voice quality in adults: A systematic review. J. Voice 33, 1328 (2019).

Google Scholar

Edwards, D. A. et al. Inhaling to mitigate exhaled bioaerosols. Proc. Natl. Acad. Sci. USA 101(50), 1738317388 (2004).

ADS CAS PubMed PubMed Central Google Scholar

Hamed, R., Schenck, D. M. & Fiegel, J. Surface rheological properties alter aerosol formation from mucus mimetic surfaces. Soft Matter 16(33), 78237834 (2020).

ADS CAS PubMed Google Scholar

Crowther, R. S. & Marriott, C. Counter-ion binding to mucus glycoproteins. J. Pharm. Pharmacol. 36(1), 2126 (1984).

CAS PubMed Google Scholar

Edwards, D. A. et al. A new natural defense against airborne pathogens. QRB Discov. 1, e5 (2020).

PubMed PubMed Central Google Scholar

Edwards, D. A., Salzman, J., Devlin, T. & Langer, R. Nasal calcium-rich salts for cleaning airborne particles from the airways of essential workers, students, and a family in quarantine. Mol. Front. J. 4, 110 (2020).

CAS Google Scholar

George, C. E. et al. Airway hygiene in children and adults for lowering respiratory droplet exposure in health and learning environments in clean and dirty air. Mol. Front. J. 4, 4657 (2020).

CAS Google Scholar

Vishnoy, A. Insacog Data Too Confirm Rise of B.1.617 Across States. (India Economic Times, 2021). https://economictimes.indiatimes.com/news/india/insacog-data-too-confirm-rise-of-b-1-617-across-states/articleshow/82781103.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst.

Edwards, D. A. et al. Exhaled aerosol increases with COVID-19 infection, age, and obesity. PNAS 118, e2021830118 (2021).

CAS PubMed PubMed Central Google Scholar

Read more:
COVID-19 symptoms are reduced by targeted hydration of the nose, larynx and trachea | Scientific Reports - Nature.com

Related Posts