SpaceHabs: One man's architectural vision for colonizing Mars

Posted: April 9, 2014 at 12:44 am

With a projected settlement date of 2025, the Mars One project has received over 200,000 applications for the one way trip to the Red Planet. But creating a living, sustainable community on the distant planet for the select inhabitants will require not only unique technological and engineering solutions, but also novel architectural systems. Bryan Versteeg is a conceptual designer whos been working with the Mars One team in anticipation of the planets eventual colonization.

Versteeg is the founder of SpaceHabs.com, which launched in 2011 in order to focus on the conceptual visualization for space exploration after he was approached by the founders of the Mars One Foundation.

Versteeg took time away from his Martian renderings to speak with Gizmag about the projects unique challenges and the inspirations behind his futuristic SpaceHab projects.

Gizmag: Mars One has received countless amounts of attention from both the media and persons looking for a literal one way trip to the red planet. Where do your designs fit into the project as a whole and what kind of earth-bound influences and empirical experiences were included in the process?

Versteeg: I started working with Mars One over 2 years ago, well before the entire project was announced. The plan is to design and build and ship parts of the infrastructure required to help people live on Mars, then send 4 people at a time to grow a (eventually) self sustaining settlement.

My job is to communicate what it could look like and help to identify some of the necessary parts required. At the front end of this project, my job is purely conceptual, creating images and animations that help people to relate to the mission. As we move forward however, the tasks involved are gigantic. Trying to identify the necessary building blocks of technology, industry, agriculture and society that would enable an isolated group of people to live long, healthy, happy lives is a monumental task. What excites me most is that the building blocks of a self sustaining infrastructure are something that can be used where ever people live. So much of what we learn in the development process can be used immediately here on earth. Projects like this help to identify and spur innovation in areas that could ultimately add to the quality of life. The sustainable and efficient growing of food is one of the most exciting examples of how innovation can potentially help everyone, whether they live in an isolated community, urban center, or Mars.

Gizmag: What specific challenges do you foresee in designing habitats for life on Mars?

Versteeg: Designing habitats for space or other planets presents many challenges that are unique to their specific environment. We don't have the benefit of being able to use the precedents available and the lessons learned from a millennium of home design here on Earth. On Earth, every aspect of our homes has been an evolving process for generations. When designing a new home for here on Earth, you can easily choose from an endless number of variations, styles and details to customize your space, using parts and techniques you know will work. But things like doors, windows, life support systems, etc. for other planets, however, require an extensive amount of research and creativity to work in application in that worlds specific environment. Unfortunately, we don't have a significant library to choose from on the subject, so innovation in almost every aspect is required.

Gizmag: In terms of adapting to Mars' extreme climate, what ideas or requirements do you foresee when it comes to creating Martian habitats and how do you see that affecting Earth-based materials?

Versteeg: Environment in this case can be a very difficult variable to design for. In space, equipment exposed to the Sun on certain planets can bake at 250 C (482 F) but once in the shadows, the temperature can plummet below -160C (-256 F). These temperatures will not only cause certain materials to melt or become brittle, but a 410 C (782 F) temperature fluctuation could significantly affect structural members as a result of extreme expansion or contraction.

The rest is here:
SpaceHabs: One man's architectural vision for colonizing Mars

Related Posts