The genomic origins of the Bronze Age Tarim Basin mummies – Nature.com

Posted: October 30, 2021 at 3:29 pm

Peyrot, M. in Aspects of Globalisation: Mobility, Exchange and the Development of Multi-Cultural States 1217 (2017).

Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369374 (2018).

CAS PubMed Article ADS PubMed Central Google Scholar

Hemphill, B. E. & Mallory, J. P. Horse-mounted invaders from the Russo-Kazakh steppe or agricultural colonists from western Central Asia? A craniometric investigation of the Bronze Age settlement of Xinjiang. Am. J. Phys. Anthropol. 124, 199222 (2004).

PubMed Article PubMed Central Google Scholar

Betts, A., Jia, P. & Abuduresule, I. A new hypothesis for early Bronze Age cultural diversity in Xinjiang, China. Archaeol. Res. Asia 17, 204213 (2019).

Article Google Scholar

Li, C. et al. Evidence that a West-East admixed population lived in the Tarim Basin as early as the early Bronze Age. BMC Biol. 8, 15 (2010).

PubMed PubMed Central Article CAS Google Scholar

Li, C. et al. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China. BMC Genet. 16, 78 (2015).

PubMed PubMed Central Article CAS Google Scholar

Ning, C. et al. Ancient genomes reveal Yamnaya-related ancestry and a potential source of Indo-European speakers in Iron Age Tianshan. Curr. Biol. 29, 25262532 (2019).

CAS PubMed Article PubMed Central Google Scholar

Zhou, X. et al. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 6, 7887 (2020).

CAS PubMed Article PubMed Central Google Scholar

Wang, T. et al. Tianshanbeilu and the isotopic millet road: reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. Natl Sci. Rev. 6, 10241039 (2019).

CAS PubMed Article PubMed Central Google Scholar

Zhang, Y. et al. Holocene environmental changes around Xiaohe Cemetery and its effects on human occupation, Xinjiang, China. J. Geogr. Sci. 27, 752768 (2017).

Article Google Scholar

Hong, Z., Jian-Wei, W., Qiu-Hong, Z. & Yun-Jiang, Y. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. J. Arid Environ. 55, 545553 (2003).

Article ADS Google Scholar

Jia, P. & Betts, A. A re-analysis of the Qiemuerqieke (Shamirshak) cemeteries, Xinjiang, China. J. Indo-Eur. Stud. 38, 275317 (2010).

Google Scholar

Peyrot, M. The deviant typological profile of the Tocharian branch of Indo-European may be due to Uralic substrate influence. Indo-Eur. Linguist. 7, 72121 (2019).

Article Google Scholar

Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957960 (2012).

CAS PubMed PubMed Central Article ADS Google Scholar

Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167172 (2015).

CAS PubMed PubMed Central Article ADS Google Scholar

Mallory, J. P. & Mair, V. H. The Tarim Mummies: Ancient China and the Mystery of the Earliest Peoples from the West (Thames & Hudson, 2000).

Barber, E. W. Mummies of Urumchi (W. W. Norton & Co., 1999).

Mair, V. H. Prehistoric Caucasoid corpses of the Tarim Basin. J. Indo-Euro. Stud. 23, 281307 (1995).

Google Scholar

Mair, V. H. in The Bronze Age and Early Iron Age Peoples of Eastern Central Asia Vol. 2 835855 (Institute for the Study of Man and the University of Pennsylvania Museum, 1998).

Mallory, J. P. The Problem of Tocharian Origins: an Archaeological Perspective (Univ. Pennsylvania Press, 2015).

Chen, K. & Hiebert, F. T. The late prehistory of Xinjiang in relation to its neighbors. J. World Prehist. 9, 243300 (1995).

Article Google Scholar

Han, K. Craniometric study on the ancient individuals from the Gumugou site, Xinjiang (in Chinese). Kaogu Xuebao 361384 (1986).

Kuzmina, E. E. in Archeology, Migration and Nomadism, Linguistics Vol. 1 6393 (Univ. Pennsylvania Museum Publications, 1998).

Li, Y. Agriculture and palaeoeconomy in prehistoric Xinjiang, China (3000200 BC). Veg. Hist. Archaeobot. 30, 287303 (2021).

Article Google Scholar

Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 238 (2012).

Article Google Scholar

Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

CAS PubMed PubMed Central Article Google Scholar

Feng, Q. et al. Genetic history of Xinjiangs Uyghurs suggests Bronze Age multiple-way contacts in Eurasia. Mol. Biol. Evol. 34, 25722582 (2017).

CAS PubMed Article PubMed Central Google Scholar

Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248E11255.

Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia. Cell 181, 12321245 (2020).

CAS PubMed Article PubMed Central Google Scholar

Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasias Eastern Steppe. Cell 183, 890904 (2020).

CAS PubMed PubMed Central Article Google Scholar

Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200205 (2016).

CAS PubMed PubMed Central Article ADS Google Scholar

Wang, C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413419 (2021).

CAS PubMed PubMed Central Article ADS Google Scholar

Li, J.-F. et al. Buried in sands: environmental analysis at the archaeological site of Xiaohe Cemetery, Xinjiang, China. PLoS ONE 8, e68957 (2013).

CAS PubMed PubMed Central Article ADS Google Scholar

Qiu, Z. et al. Paleo-environment and paleo-diet inferred from Early Bronze Age cow dung at Xiaohe Cemetery, Xinjiang, NW China. Quat. Int. 349, 167177 (2014).

Article Google Scholar

Yang, Y. et al. Proteomics evidence for kefir dairy in Early Bronze Age China. J. Archaeol. Sci. 45, 178186 (2014).

CAS Article Google Scholar

Xie, M. et al. Identification of a dairy product in the grass woven basket from Gumugou Cemetery (3800 BP, northwestern China). Quat. Int. 426, 158165 (2016).

Article Google Scholar

Yang, R. et al. Investigation of cereal remains at the Xiaohe Cemetery in Xinjiang, China. J. Archaeol. Sci. 49, 4247 (2014).

CAS Article Google Scholar

Zhang, G. et al. Ancient plant use and palaeoenvironmental analysis at the Gumugou Cemetery, Xinjiang, China: implication from desiccated plant remains. Archaeol. Anthropol. Sci. 9, 145152 (2017).

Article ADS Google Scholar

Yu, J. & He, J. Significant discoveries from the excavation of Jimunai Tongtiandong site (in Chinese). Wenwubao 8 (2017).

Hollard, C. et al. New genetic evidence of affinities and discontinuities between Bronze Age Siberian populations. Am. J. Phys. Anthropol. 167, 97107 (2018).

PubMed Article PubMed Central Google Scholar

Li, C. et al. Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J. Archaeol. Sci. 38, 115119 (2011).

CAS Article Google Scholar

Stevens, C. J. & Fuller, D. Q. The spread of agriculture in eastern Asia: archaeological bases for hypothetical farmer/language dispersals. Lang. Dyn. Change 7, 152186 (2017).

Article Google Scholar

Abuduresule, I. Archaeological report of Xiaohe cemetery of 2003 (in Chinese). Wenwu 442 (2007).

Abuduresule, Y., Li, W. & Hu, X. in The Cultures of Ancient Xinjiang, Western China: Crossroads of the Silk Roads 1951 (Archaeopress, 2019).

Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (055 cal kBP). Radiocarbon 62, 725757 (2020).

CAS Article Google Scholar

Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 18091833 (2017).

CAS Article Google Scholar

Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 1575815763 (2013).

CAS PubMed PubMed Central Article ADS Google Scholar

Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracilDNAglycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, (2015).

Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

PubMed PubMed Central Article CAS Google Scholar

Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, (2016).

Li, H. & Durbin, R. Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics 25, 17541760 (2009).

CAS PubMed PubMed Central Article Google Scholar

Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918925 (2015).

CAS PubMed PubMed Central Article Google Scholar

Jnsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 16821684 (2013).

PubMed PubMed Central Article CAS Google Scholar

Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

PubMed PubMed Central Article Google Scholar

Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356 (2014).

PubMed PubMed Central Article Google Scholar

Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966976 (2019).

PubMed PubMed Central Article Google Scholar

Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419424 (2016).

View original post here:
The genomic origins of the Bronze Age Tarim Basin mummies - Nature.com

Related Posts