The African Genome Variation Project shapes medical genetics in Africa

Posted: December 4, 2014 at 8:45 pm

We examined highly differentiated SNPs between European and African populations, as well as among African populations to gain insights into loci that may have undergone selection in response to local adaptive forces (Supplementary Methods). To account for confounding due to Eurasian admixture, we also conducted analyses after masking Eurasian ancestry (Supplementary Methods and Supplementary Note 6).

On examining locus-specific EuropeAfrica differentiation, enrichment of loci known to be under positive selection was observed among the most differentiated sites (P = 1.41031). Furthermore, there was statistically significant enrichment for gene variants among these, indicating that this differentiation is unlikely to have arisen purely from random drift (P = 0.0002). Additionally, we found no evidence for background selection as the primary driver of differentiation among these loci (Supplementary Note 7).

In addition to genes known to be under positive selection (for example, SLC24A5, SLC45A2 and OCA219, 20, LARGE21 and CYP3A4/5) (Supplementary Fig. 3), we found evidence of differentiation in novel gene regions, including one implicated in malaria (for chemokine receptor 1, CR1) (Extended Data Fig. 8). CR1 carries the Knops blood group antigens and has previously been implicated in malaria susceptibility22 and severity23, with evidence suggesting positive selection in malaria-endemic regions24 (Extended Data Fig. 8). We also identified highly differentiated variants within genes involved in osmoregulation (ATP1A1 and AQP2) (Extended Data Fig. 8). Deregulation of AQP2 expression and loss-of-function mutations in ATP1A1 have been associated with essential and secondary hypertension, respectively25, 26. Climatic adaptive changes in these gene regions could potentially provide a biological basis for the high burden of hypertension and differences in salt sensitivity observed in SSA27.

In contrast, overall differentiation among African populations was modest (maximum masked FST = 0.19) (Supplementary Fig. 4) and only 56/1,237 sites remained in the tail distribution after masking (Supplementary Methods, Supplementary Table 6). This suggests that a large proportion of differentiation observed among African populations could be due to Eurasian admixture, rather than adaptation to selective forces (Supplementary Note 6). Genes known to be under selection were notably enriched among the most differentiated loci after masking of Eurasian ancestry (P = 2.31016). Among the 56 loci robust to Eurasian ancestry masking (Supplementary Table 6), we identified several loci known to be under selection (Extended Data Fig. 8), including a highly differentiated variant (rs1378940) in the CSK gene region implicated in hypertension in genome-wide association studies (GWAS)28. The major allele of rs1378940 among Africans was in complete linkage disequilibrium with the risk allele of the GWAS SNP rs1378942 (ref. 29), with the frequency of this allele highly correlated with latitude (r = 0.67), providing support for local adaptation in response to temperature as a possible mechanism for hypertension (Supplementary Fig. 5)30, 31.

Comparing populations residing in endemic and non-endemic infectious disease regions (Supplementary Methods), we identified several loci associated with infectious disease susceptibility and severity. As well as the known sickle-cell locus related to malaria, this approach identified additional signals for genes potentially under selection, including the PKLR region32, RUNX333, the haptoglobin locus, CD16334, IL1035, 36, CFH, and the CD28-ICOS-CLTA4 locus (Supplementary Table 7 and Extended Data Fig. 8)37. Similar comparisons for Lassa fever identified the known LARGE gene, as well as candidates associated with viral entry and immune response, including in the Histocompatibility Leukocyte Antigen region, DC-SIGN/DC-SIGNR38 (also known as CD209/CLEC4M), RNASEL, CXCR6, IFIH139 and OAS2/3 regions (Supplementary Table 7). For trypanosomiasis, we identified APOL140, as well as several loci implicated in immune response and binding to trypanosoma, including FAS, FASLG41, 42, IL23R43, SIGLEC6 and SIGLEC12 (Supplementary Table 7)44. For trachoma, we identified signals in ABCA1 and CXCR6, which may be important for the growth of the parasite and host immune response, respectively (Supplementary Table 7)45, 46.

Continued here:
The African Genome Variation Project shapes medical genetics in Africa

Related Posts