Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae – Nature.com

Posted: November 17, 2021 at 1:23 pm

Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).

ADS CAS PubMed PubMed Central Google Scholar

Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 4355 (2019).

PubMed Google Scholar

Marin, B., Nowack, E. C. M. & Melkonian, M. A plastid in the making: evidence for a second primary endosymbiosis. Protist 156, 425432 (2005).

CAS PubMed Google Scholar

Nowack, E. C. M. & Weber, A. P. M. Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu. Rev. Plant Biol. 69, 134 (2018).

Google Scholar

Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240243 (2019).

CAS PubMed Google Scholar

Li, L. et al. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat. Ecol. Evol. 4, 12201231 (2020).

PubMed PubMed Central Google Scholar

Burki, F. et al. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. R. Soc. B Biol. Sci. 283, 20152802 (2016).

Google Scholar

Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum telonemia further resolves the eukaryote tree of life. Mol. Biol. Evol. 36, 757765 (2019).

CAS PubMed PubMed Central Google Scholar

Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410414 (2018).

ADS CAS PubMed Google Scholar

Irisarri, I., Strassert, J. F. H. & Burki, F. Phylogenomic insights into the origin of primary plastids. Syst. Biol. https://doi.org/10.1093/sysbio/syab036 (2021).

Yoon, H. S. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332, 714717 (2011).

ADS CAS PubMed Google Scholar

Not, F. et al. Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315, 253255 (2007).

ADS CAS PubMed Google Scholar

Cuvelier, M. L. et al. Widespread distribution of a unique marine protistan lineage. Environ. Microbiol. 10, 16211634 (2008).

CAS PubMed PubMed Central Google Scholar

Seenivasan, R., Sausen, N., Medlin, L. K. & Melkonian, M. Picomonas judraskeda Gen. Et Sp. Nov.: the first identified member of the Picozoa Phylum Nov., a widespread group of picoeukaryotes, formerly known as picobiliphytes. PLoS ONE 8, e59565 (2013).

ADS CAS PubMed PubMed Central Google Scholar

Simo, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 32103212 (2015).

PubMed Google Scholar

Moreira, D. & Lpez-Garca, P. The rise and fall of Picobiliphytes: how assumed autotrophs turned out to be heterotrophs. Bioessays 36, 468474 (2014).

PubMed PubMed Central Google Scholar

Vargas, Cde et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

PubMed Google Scholar

Kim, E. & Graham, L. E. EEF2 analysis challenges the monophyly of archaeplastida and chromalveolata. PLoS ONE 3, e2621 (2008).

ADS PubMed PubMed Central Google Scholar

Janoukovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 37173724.e5 (2017).

PubMed Google Scholar

Wideman, J. G. et al. Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat. Microbiol. 5, 154165 (2020).

CAS PubMed Google Scholar

Dorrell, R. G. et al. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.1819976116 (2019).

Mathur, V. et al. Multiple independent origins of Apicomplexan-like parasites. Curr. Biol. 29, 29362941.e5 (2019).

CAS PubMed Google Scholar

Reyes-Prieto, A., Weber, A. P. M. & Bhattacharya, D. The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41, 147168 (2007).

CAS PubMed Google Scholar

Gould, S. B., Waller, R. F. & McFadden, G. I. Plastid evolution. Annu. Rev. Plant Biol. 59, 491517 (2008).

CAS PubMed Google Scholar

Shih, P. M. et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl Acad. Sci. USA 110, 10531058 (2013).

ADS CAS PubMed Google Scholar

Ponce-Toledo, R. I. et al. An early-branching freshwater cyanobacterium at the origin of plastids. Curr. Biol. 27, 386391 (2017).

CAS PubMed PubMed Central Google Scholar

Yabuki, A. et al. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci. Rep. 4, 4641 (2014).

CAS PubMed PubMed Central Google Scholar

Hehenberger, E., Gast, R. J. & Keeling, P. J. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc. Natl Acad. Sci. USA 116, 1793417942 (2019).

CAS PubMed PubMed Central Google Scholar

Sarai, C. et al. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc. Natl Acad. Sci. USA 117, 53645375 (2020).

CAS PubMed PubMed Central Google Scholar

Yamada, N., Sakai, H., Onuma, R., Kroth, P. G. & Horiguchi, T. Five non-motile dinotom dinoflagellates of the genus Dinothrix. Front. Plant Sci. 11, 591050 (2020).

PubMed PubMed Central Google Scholar

Stiller, J. W., Reel, D. C. & Johnson, J. C. A single origin of plastids revisited: convergent evolution in organellar genome content. J. Phycol. 39, 95105 (2003).

CAS Google Scholar

Larkum, A. W. D., Lockhart, P. J. & Howe, C. J. Shopping for plastids. Trends Plant Sci. 12, 189195 (2007).

CAS PubMed Google Scholar

Howe, C. J., Barbrook, A. C., Nisbet, R. E. R., Lockhart, P. J. & Larkum, A. W. D. The origin of plastids. Philos. Trans. R. Soc. B Biol. Sci. 363, 26752685 (2008).

CAS Google Scholar

Stiller, J. W. Toward an empirical framework for interpreting plastid evolution. J. Phycol. 50, 462471 (2014).

PubMed Google Scholar

Bhattacharya, D., Archibald, J. M., Weber, A. P. M. & Reyes-Prieto, A. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29, 12391246 (2007).

CAS PubMed Google Scholar

Kim, E. & Maruyama, S. A contemplation on the secondary origin of green algal and plant plastids. Acta Soc. Bot. Pol. 83, 331336 (2014).

Google Scholar

Zhu, G., Marchewka, M. J. & Keithly, J. S. Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146, 315321 (2000).

CAS PubMed Google Scholar

Janoukovec, J. et al. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. Elife 8, e49662 (2019).

PubMed PubMed Central Google Scholar

Gornik, S. G. et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl Acad. Sci. USA 112, 57675772 (2015).

ADS CAS PubMed PubMed Central Google Scholar

Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123135 (2004).

CAS PubMed Google Scholar

Archibald, J. M. Genomic perspectives on the birth and spread of plastids. Proc. Natl Acad. Sci. USA 112, 1014710153 (2015).

ADS CAS PubMed PubMed Central Google Scholar

Burki, F. et al. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol. Evol. 4, 626635 (2012).

PubMed Google Scholar

Deschamps, P. & Moreira, D. Reevaluating the green contribution to diatom genomes. Genome Biol. Evol. 4, 683688 (2012).

CAS PubMed PubMed Central Google Scholar

Qiu, H., Yoon, H. S. & Bhattacharya, D. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes. Front. Plant Sci. 4, 18 (2013).

CAS Google Scholar

Morozov, A. A. & Galachyants, Y. P. Diatom genes originating from red and green algae: implications for the secondary endosymbiosis models. Mar. Genom. 45, 7278 (2019).

CAS Google Scholar

Sibbald, S. J. & Archibald, J. M. Genomic insights into plastid evolution. Genome Biol. Evol. 12, evaa096 (2020).

Google Scholar

Singer, A. et al. Massive protein import into the early-evolutionary-stage photosynthetic organelle of the Amoeba Paulinella chromatophora. Curr. Biol. 27, 27632773.e5 (2017).

CAS PubMed Google Scholar

Burki, F. et al. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot. Cell 13, 246255 (2014).

PubMed PubMed Central Google Scholar

Hehenberger, E., Burki, F., Kolisko, M. & Keeling, P. J. Functional relationship between a dinoflagellate host and its diatom endosymbiont. Mol. Biol. Evol. 33, 23762390 (2016).

CAS PubMed Google Scholar

Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 2057420583 (2019).

ADS CAS PubMed PubMed Central Google Scholar

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 17, 1012 (2011).

Google Scholar

Here is the original post:
Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae - Nature.com

Related Posts