RESULTS AND DISCUSSION
To address the fate of DNA downstream of physiologically relevant RFBs and to assess the consequences for genetic integrity, we monitored mutagenesis at endogenous G-quadruplex (G4) motifs. It was previously demonstrated in Caenorhabditis elegans that a single G4 structure under physiological conditions can impose a persistent impediment to DNA replication, requiring the helicase FANCJ/DOG-1 for resolution (35). Failure to unwind the impediment results in a DNA double-strand break (DSB) that requires polymerase (POLQ)mediated end-joining (TMEJ) for its repair (4). A distinct mutation profile results in small deletions, typically 70 to 200 base pairs (bp) in size, which have one junction mapping to the stem of the G4 and the other junction ~70 to 200 bp downstream of it. While the nascent strand blocked at the RFB likely defines the proximal deletion junction, it is currently unknown what biology is dictating the location of the junction distal to the RFB, and thus which enzymes suppress excessive DNA loss as the result of underreplication or because of endo- or exonucleic attack on incomplete replication intermediates.
We sought to test the idea that DNA synthesis downstream of an RFB limits the size of a vulnerable single-stranded (ssDNA) gap by that act producing an ssDNA/double-stranded DNA (dsDNA) transition point that could define the RFB-distal deletion junctionthe size distribution of deletions thus reflecting the ssDNA gap width (Fig. 1A). Previous work indicated that such ssDNA gaps can be converted to DSBs in the next round of replication after the premutagenic lesion has been passed on to daughter cells (6). Genetic testing of the logical candidate to initiate DNA synthesis, the DNA polymerase (pol )primase complex, by knockout is impossible given its essential function in genome duplication (7, 8). Instead, we made use of an established biochemical property of this enzyme. RNA primer initiation by the primase subunit is, in fact, not random: All tested eukaryotic pol -primase complexes use purine as a cofactor to kickstart RNA synthesis and thus require a mandatory pyrimidine template (811). We exploited this necessity by genetically engineering DNA stretches consisting exclusively of purines, which we termed primase deserts (PDs) into the C. elegans genome downstream of a replication-blocking G4 motif (Fig. 1, A and B). To monitor mutagenic events, we placed a G4 motif flanked by a stop codon in the reading frame of the unc22 gene, hence generating UNC-22 loss-of-function animals, which move uncoordinatedly (twitching; Fig. 1B). G4-induced deletion events that remove the stop codon can lead to restoration of the deletion-tolerant UNC-22 open reading frame (ORF) and reversion to wild-type moving animals, which can easily be isolated from populations of twitching animals. To increase the rate of mutagenesis at replication-blocking G4s, we used animals that lack DOG-1/FANCJ helicase (fig. S1). The deletion spectrum of >50 independently isolated revertant animals is consistent with earlier work: Deletions have one junction flanking the G4 motif immediately upstream and have the other junction 70 to 200 bp downstream of the G4. In addition, these deletions rely on TMEJ (Fig. 1C and fig. S1) (4). Next, we inserted PDs (which by themselves do not have predicted G4 folding capability) of different lengths (56, 100, 140, and 160 bp), ~50 bp downstream of the G4 motif (see Fig. 1B and fig. S2 for a schematic illustration) (12). None of these deserts affected the reversion rate as compared to the allele without such PD (fig. S1). However, we observed a profound influence on the position of the deletion junction distal to the G4 (Fig. 1C): The vast majority of deletion junctions were found outside the deserts, and the median deletion size shifted proportionally with the PD size. As expected, the position of the proximal junction, likely reflecting the position of the stalled nascent strand, was unaffected (fig. S1). The altered deletion spectrum induced by PDs was completely dependent on the orientation of the desert: Insertion of an inverted sequence at the same location such that a track results exclusively consisting of pyrimidines downstream of the RFB had no effect on the position of the distal deletion junction (Fig. 1C and fig. S2). This outcome suggests that primase activity downstream of an RFB suppresses extensive DNA loss by reducing the ssDNA gap, thereby defining the position where DNA eventually becomes susceptible to end-joining (EJ) activity. Later steps in the biology of G4-induced mutagenesis, i.e., processing of DSBs by TMEJ, appear unaffected as deletions taking out the PDs have microhomology at the junction, occasionally have template insertions, and are completely dependent on functional POLQ (fig. S1).
(A) A schematic representation of a model explaining G4-induced deletion mutagenesis, where one deletion junction (proximal to the RFB) is defined by the blocked nascent strand, the other (distal to the RFB) by the ssDNA/dsDNA transition of downstream Okazaki fragments. Stretches of pyrimidines, which we termed primase deserts (PDs), are expected to be devoid of primer initiation because primase requires a template pyrimidine to initiate synthesis of the RNA primer. G4e is an endogenous G4 motif inserted in unc-22. (B) The C. elegans genome was engineered to include a G4 sequence at the endogenous unc-22 gene, which rendered the UNC-22 ORF out-of-frame. The unc-22(G4) gene was modified to contain PDs of different length at distinct positions from the G4. These alleles disrupt UNC-22 functionality, yet deletion mutagenesis induced by the G4 can restore the downstream ORF resulting in wild-type moving animals (see fig. S2 for details). WT, wild type. (C to E) Deletion spectra of dog-1deficient animals with different PDs and a control PD (stretch of pyrimidines) positioned downstream of the G4 motif in unc-22. PDs are positioned 47 bp downstream of G4 motif, unless the label contains @ sign, e.g., 125PD@25, means a 125-bp PD at 25 bp from the G4 motif. Dots represent independently derived deletion alleles and indicate the position of the distal junctions (in base pairs) relative to the G4 motif set at 0. Blue rectangles indicate the position and size of the PDs, and gray rectangle indicates the position and size of the control PD. Red lines indicate the median. ns, nonsignificant; *P < 0.05, ***P < 0.001, and ****P < 0.0001 by Dunnetts multiple comparisons test.
While junctions are greatly underrepresented in PDs, some were found (Fig. 1C). Although promiscuity of RNA primases, potentially templating on purines, cannot be excluded, these outcomes could also result from priming upstream of the deserts: There are nine pyrimidine bases between the G4 and the deserts, providing templates for primer initiation. Replacement of eight of these nine pyrimidines by purines (the ninth is part of the stop codon downstream of the G4 motif and is essential to the assay) indeed further reduced the number of deletions with a junction within the desert (from 17 to 5%; Fig. 1D). This outcome also suggests (i) that deletion junctions can be located numerous bases away from where a primer starts and (ii) that primase can initiate much closer to an RFB than was suspected on the basis of deletion junctions being >70 bp downstream of the RFB. Priming in close proximity to the stalled replisome may, however, be rare, as analysis of the distributions presented in Fig. 1D points to restricted template availability: The distribution at normal sites (e.g., Fig. 1D, top) resembles that at desert-containing sites if one envisions an occlusion zone from 0 to ~50 bp downstream of the G4. To test this idea directly, we engineered a 46-bp desert immediately adjacent to the G4 motif and found this desert to have no effect on the deletion distribution, strengthening the notion that priming rarely occurs in very close proximity of an RFB, possibly due to steric hindrance by either the RFB or the blocked replisome (Fig. 1D, bottom). Last, we tested how PDs affected the deletion landscape when positioned at 80 and 100 bp downstream of the RFB, where most of the deletion junctions map under unperturbed circumstances. In such a scenario, there is an ample opportunity for primase initiation between the replication stall and the desert. Figure 1E shows a profound and highly indicative disturbance: The deserts split the distributions in two; deletion junctions now predominantly map to either sides of the desert. However, the deserts are not devoid of junctions; for the desert 80 bp from the G4, we found many junctions within the desert, close to its 5 border. This outcome may be best explained by abundant primase initiation in the region between G4 and desert, while other subsequent biology contributes to the loss of bits of DNA before repair by TMEJ. Later in the manuscript, we will describe one of these contributing activities.
We next aimed to identify genes that contribute to genome stability at sites of stalled replication. Motivated by the suggestion that DNA priming downstream of an RFB affects the degree of DNA loss in a polarized manner, we generated an in vivo reporter system that not only visualizes G4-induced deletion formation but is also able to discriminate between categorically different deletion sizes. We inserted enhanced green fluorescent protein (eGFP) and wrmScarlet (13) separated by a 2A sequence (to ensure physical separation of the fluorescent markers upon expression), C-terminal to a small sequence directly downstream of the ATG start codon. This sequence contains a G4 motif and a stop codon to prevent expression of eGFP and wrmScarlet (Fig. 2A). Deletions that take out the stop codon can bring the downstream ORF in-frame with the upstream ATG, resulting in reporter expression. The chosen length of the N-terminal sequence dictates that deletions smaller than 160 bp can lead to expression of eGFP and wrmScarlet, whereas in-frame deletions of 160 to 1000 bp exclusively activate wrmScarlet as GFP-encoding sequence is lost. The reporter functionality and G4 specificity were confirmed by detecting elevated levels of activation in DOG-1/FANCJ-deficient animals (Fig. 2, B and C): 15% of animals have stochastic patches of somatic cells expressing either eGFP and wrmScarlet (50%) or exclusively wrmScarlet (50%). This 50:50 ratio is in good agreement with deletion size distributions at endogenous G4 motifs. In line with the directionality and asymmetry of deletions, no worms were observed that only expressed eGFP.
(A) Fluorescent-based reporter able to discriminate G4-induced deletion mutagenesis based on size: Deletions that are <160 bp and bring the downstream ORF in frame with the upstream ATG result in mEGFP and wrmScarlet expression. In-frame deletions that are 160 to 1000 bp will express wrmScarlet exclusively. (B) Quantification of reporter activation for ~250 synchronized animals of the indicated genotype. Experiments are performed in triplicate. Error bars denote SD. TL, transmitted light. (C) Representative images of fluorescent animals. Long dashes indicate an eGFP- and wrmScarlet-positive animal; short dashes indicate a wrmScarlet-positive animal. (D) Ratio of fluorescent animals expressing wrmScarlet exclusively upon RNAi-mediated knockdown of genome stability genes (see table S4). RNAi (L4440) in red. (E) Validation of POLA2/DIV-1 by RNAi [Ahringer (50) and Vidal (51) library clones] in triplicate; and by genetics: dog-1 div-1(ts) animals versus dog-1. Green indicates animals expressing both mEGFP and wrmScarlet, and red indicates animals exclusively expressing wrmScarlet. Error bars denote SD; ***P < 0.001 and ****P < 0.0001 by t test. (F) Deletion spectra from the unc-22 G4 assay, with or without a PD (in blue), for the indicated genotypes. Dots represent independently derived deletion alleles and indicate the position of the distal junctions relative to the G4 motif set at 0. Red lines indicate the median; ****P < 0.0001 by Mann-Whitney test. (G) Size representation of deletions at endogenous G4 loci that were found in animals of the indicated genotype. Each dot represents the distal junction relative to the G4 sequence set at 0. ****P < 0.0001 by Mann-Whitney test.
We next used these reporter animals to perform a candidate-based RNA interference (RNAi) screen, targeting enzymes that are involved in DNA repair, DNA damage signaling, and DNA replication (table S4). While none of the RNAi clones led to a complete loss of reporter activation, we found two clones that selectively reduced eGFP activation (Fig. 2D): In these knockdowns, 90 to 95% of events exclusively expressed wrmScarlet, indicative of larger deletions. Both RNAi clones target DIV-1/POLA2, which encodes the DNA pol -subunit B that is part of the DNA pol -primase complex. We validated our screen by retesting the top 20 RNAi hits in triple and found that only DIV-1 RNAi displayed a consistent increase in wrmScarlet expression (fig. S3). Targeting other members of the DNA pol -primase complex by RNAi induced embryonic lethality, precluding an assessment of their involvement. Fortuitously, previous genetic studies in C. elegans have led to the isolation of a temperature-sensitive (ts) allele of div-1/POLA2, which contains a leucine residue instead of an evolutionary highly conserved proline at amino acid position 329 (14). We tested animals that are homozygous for this allele at a growth-permissive temperature of 20C using our reporter and confirmed the RNAi results (Fig. 2E). To obtain a more detailed deletion spectrum, we performed the unc-22 assay described above and observed a profound effect: The median deletion size of 125 bp in DIV-1 wild-type animals shifted to 262 bp in DIV-1(P329L) animals grown at 20C (Fig. 2F). When assayed at even lower culturing temperatures (15C), this shift was less pronounced yet still clearly present (fig. S4), arguing that the P329L mutation affects DIV-1 functionality in a temperature-dependent manner and also in conditions where population growth is seemingly unaffected. In agreement with a proposed role for pol -primase acting downstream of the RFB, the increase in deletion size can, in its entirety, be explained by nucleotide loss at the RFB distal site (fig. S5). A similar increase was observed in animals where the unc-22 allele contains a 100-bp PD: Here, the median deletion size shifted from 199 to 362 bp when DIV-1(P329L) animals were assayed (Fig. 2F). To further substantiate the involvement of DNA pol -primase activity in suppressing DNA loss at RFBs, we assayed G4-induced deletion formation throughout the C. elegans genome in an unselected manner: We clonally grew separate populations of dog-1 div-1(ts) animals in parallel to dog-1 controls for 50 generations, after which we sequenced their genomes. We found similar rates for deletion formation at genomic G4 sites in these genetic backgrounds, demonstrating that DIV-1(P329L) expression does not cause elevated fragility or number of G4s (fig. S6). However, and in perfect agreement with the reporter and unc-22 data, we found a profoundly altered size distribution at G4 loci, with the median deletion size shifting from 125 to 270 bp as a result of altered DIV-1 functionality (Fig. 2G).
We thus found that disruption of the DNA pol -primase complex via RNAi or genetic mutation leads to a very similar outcome for RFB-induced mutagenesis as the local insertion of sequences that inhibit DNA pol -primase activity in cis. Together, this provides strong support for the hypothesis that primase activity directly downstream of an RFB protects the genome locally from genetic deterioration. At least two plausible scenarios can be envisaged for recruitment and positioning of the DNA pol -primase complex at sites of stalled replication: (i) For RFBs located in the lagging strand, Okazaki fragment production by the progressing replisome provides a mechanism for placing RNA primers close to the RFB, and (ii) for RFBs in the leading strand, we favor a prominent role for a converging replication fork, which, upon its approach, will start Okazaki fragment synthesis in close proximity to the RFB. A potential explanation for the observed increased deletion size in DIV-1compromised C. elegans may be a reduced incidence of primer deposition, leading to Okazaki fragments being initiated further away from the RFB. In line with this idea is the recent observation that reduced primase expression in yeast leads to increased Okazaki fragment size (15).
At present, it is unclear whether Okazaki fragments that are located downstream of an RFB are subjected to exonucleic attack by, e.g., 5 to 3 resection enzymes. The presence of deletion junctions within the PDs, in some cases >100 bp away from the nearest primase template, hints toward this DNA processing. One candidate for this activity is EXO1 because of its demonstrated 5 to 3 exonuclease activity toward both DNA and RNA in vitro (16). We thus generated exo-1 dog-1 animals and measured G4-induced deletion formation in unc-22(G4). Figure 3A shows that the deletion junctions in EXO1-deficient animals are indeed, on average, positioned closer to the G4 motif than in EXO1-proficient animals, the median deletion size being 94 bp instead of 125 bp. A similar reduction in deletion size is observed in alleles carrying a 100-bp PD in addition to the G4 motif: 164 bp versus 199 bp for exo-1 mutant versus wild type, respectively, arguing that EXO1 activity, on average, removes 30 nucleotides of the 5 end of newly synthesized DNA at this RFB. To address the generality of this activity, we also determined the sizes of G4-induced deletions that accumulate throughout the genome in exo-1 dog-1 animals upon prolonged culturing. Compared to EXO1-proficient worms, genomic deletions mapping to G4 loci were, on average, ~40 bp smaller in worms that lost EXO1 activity (Fig. 3B and fig. S6). Our data combined suggest that Okazaki fragment production prevents excessive loss of DNA at RFBs yet are subject to EXO1-dependent degradation.
(A) Deletion spectra from the unc-22 G4 assay, with or without a PD (in blue), for the indicated genotypes. Dots represent independently derived deletion alleles and indicate the position of the distal junctions (in base pairs) relative to the G4 motif set at 0. Red lines indicate the median; ****P < 0.0001 by Mann-Whitney test. (B) Size representation of deletions at endogenous G4 loci that were obtained after prolonged culturing of animals of the indicated genotype. Each dot represents the distal junction relative to the G4 sequence set at 0. ****P < 0.0001 by Mann-Whitney test. (C) Deletion spectra from the unc-22 G4 assay for the indicated genotypes. Dots represent independently derived deletion alleles and indicate the position of the distal junctions (in base pairs) relative to the G4 motif set at 0. Red lines indicate the median; ****P < 0.0001 by Dunnetts multiple comparisons test. (D) Quantification of reporter activation (as described in Fig. 2A) for 200 to 300 synchronized L4 animals of the indicated genotype. Green indicates the ratio of animals expressing both mEGFP and wrmScarlet over the total of animals that express one or both fluorochromes, and red indicates the ratio of animals exclusively expressing wrmScarlet. Experiments were performed in triplicate. Error bars denote SD. ****P < 0.0001 by t test. (E) Size representation of deletions at endogenous G4 loci that were obtained after prolonged culturing of animals of the indicated genotype. Each dot represents the distal junction relative to the G4 sequence set at 0. ****P < 0.0001 by Mann-Whitney test. (F) Deletion spectra from the unc-22 G4 assay for the indicated genotypes. Dots represent independently derived deletion alleles and indicate the position of the distal junctions (in base pairs) relative to the G4 motif set at 0. Red lines indicate the median; ***P < 0.001 and ****P < 0.0001 by Dunnetts multiple comparisons test.
Since EXO1 is known to perform long-range resection (17), we were surprised to observe such a modest loss of only ~30 to 40 nucleotides, which may point to inhibiting factors that we next sought to identify. We focused our attention on the 9-1-1 (RAD9a/HUS1/RAD1) heterotrimeric complex, because it is recruited to sites of stalled replication forks, where it fulfills an essential function in DNA damage-induced checkpoint activation; hence, this complex is also called the checkpoint clamp (18, 19). The 9-1-1 complex structurally resembles PCNA, and an interesting concept here emerges of similar ring-like protein structures providing physical boundaries and functional scaffolds on both ends of an RFB. Consequences of 9-1-1 loss include genomic instability, telomere shortening, and cell death (20, 21). In contrast to mammalian cells, nematodes tolerate a complete loss of 9-1-1, at least for some generations, up to the point that telomeres become critically short, leading to growth arrest, telomere fusions, and animal sterility (2224). These delayed detrimental phenotypes provide a sufficient window of opportunity to test the involvement of 9-1-1 complex members in protecting Okazaki fragment deterioration at sites of stalled replication. To this end, we established G4-induced deletion profiles in animals carrying null mutations in HPR-9/RAD9a, in HUS-1/HUS1, and in MRT-2/RAD1. The absence of any single member of the 9-1-1 clamp is known to destabilize the complex, and we therefore expect different null mutations to behave similarly (2224). We found that the loss of 9-1-1 had a profound effect on the size of the deletions induced at G4s: While the proximal junction was unaffected, we observed a marked increase in distance and spread of the distal junction, with the median increasing three to four times to 435 to 551 bp and the 10 to 90 percentile ranging from 140 to 1591 bp (82 to 288 bp in 9-1-1proficient animals) (Fig. 3C and fig. S6). We found an identical outcome by knocking out the clamp loader RAD17 (Fig. 3C) (25), arguing that for 9-1-1 to suppress DNA loss at sites of stalled replication, it needs to be physically loaded onto DNA. While the increased loss of DNA is nonsymmetric with respect to the RFB, which argues for a role for 9-1-1 specifically in protecting DNA at the RFB downstream site, we wished to formally exclude the possibility that disturbed repair of consequential DSBs explains our observation: We found that CRISPR-induced DSB repair by TMEJ is not affected by 9-1-1 deficiency (fig. S5). Next, we verified more excessive loss at G4s by 9-1-1 dysfunction in vivo by demonstrating a greatly increased wrmScarlet over eGFP ratio in animals carrying the size-discriminatory G4-deletion reporter (Fig. 3D). Last, we performed whole-genome sequencing of hus-1 dog-1deficient animals after prolonged clonal growth and found the protective effect of 9-1-1 on sites of RFBs acting throughout the genome (Fig. 3E).
We next tested whether 9-1-1 protects the 5 dsDNA end from EXO1-dependent resection by removing EXO1 from 9-1-1deficient animals. We observed a significant reduction in the median deletion size in these animals as compared to EXO1-proficient 9-1-1mutant animals: 196 bp versus 441 bp, respectively (Fig. 3F). While most of the deletions are smaller in an exo-1 mutant background, large deletions also remain, pointing to previously reported redundancy in processing 5 DNA ends (26).
Our data, for which we used G4s as a model substrate, establish a new role for the 9-1-1 complex in limiting loss of genetic information downstream of RFBs. To address the generality of this protective function at RFBs, we extended our investigation to psoralen adducts and spontaneous damage that are dependent on replicative bypass by translesion synthesis (TLS) polymerases (2729). Exposing C. elegans to trioxsalen (TMP) followed by ultraviolet A (UVA) irradiation leads to replication-blocking psoralen cross-links, which in wild-type animals give rise to deletions randomly spread throughout the genome in the same size range as those accumulating at G4s in dog-1 animals (27). We monitored mutagenesis in wild-type and 9-1-1(hus-1)mutant animals using the wild-type 40-kb-sized unc-22 gene as a mutational target, isolating UNC-22deficient worms out of the progeny of exposed hermaphrodites (Fig. 4A). Approximately 50% of the mutants had a deletion disrupting the unc-22 ORF, and subsequent molecular characterization revealed that these were larger in hus-1deficient animals than in wild-type animals (Fig. 4B). For a third RFB category, we focused on spontaneously occurring DNA lesions that require TLS polymerases (polh-1) and (polk-1) to be bypassed: Previous work has shown that 50- to 200-bp deletions spontaneously accumulate in the genomes of animals that have impaired TLS activity (28). We here performed whole-genome sequencing of animals in which such a TLS defect (polh-1 polk-1) is combined with a 9-1-1 defect (hus-1) and found that also for this biological context, a 9-1-1 deficiency results in extensive loss of DNA: The median deletion size increased from 104 bp in HUS-1proficient to 466 bp in HUS-1deficient animals (Fig. 4C and fig. S6). Together, these data illustrate that 9-1-1 function suppresses extensive loss of DNA downstream of RFBs by counteracting EXO1-dependent nucleolytic degradation of a newly formed 5 dsDNA segment initiated by the DNA pol -primase complex. While a mechanism of physical inhibition at the site of the RFB is appealing, it could also be that disturbed 9-1-1mediated checkpoint activation is causing altered mutagenesis, e.g., by disrupted ATR (ataxia telangiectasia and Rad3-related protein) signaling (30).
(A) Mutation induction by UV/TMP treatment using the endogenous unc-22 locus as a mutational target. Wild-type (N2) and hus-1 mutant animals were either mock-treated or exposed to UV/TMP. Error bar denotes SD. (B) Size spectrum of UV/TMP-induced deletion mutations captured at the unc-22 locus. **P < 0.01 by Mann-Whitney test. (C) Size representation of genomic deletions that accumulated in the genomes of the indicated genotype upon prolonged culturing. Red lines indicate median deletion size. ****P < 0.0001 by Mann-Whitney test. (D) Tentative model for preserving lagging strand integrity at sites of stalled replication. Upon replication fork stalling at an RFB, the 9-1-1 complex protects newly made Okazaki fragments against nucleolytic degradation by EXO1. In the absence of RFB bypass, the ssDNA gaps will give rise to DSBs that are subject to polymerase mediated end joining (4, 6).
In this study, we used genetic tools to address the fate of DNA downstream of physiologically relevant RFBs and to identify factors that impact on genetic vulnerability resulting from these RFBs. To study potential deleterious consequences at nucleotide resolution, we made use of two sequence motifs that affect the replication machinery in different ways: While a G4 motif has the ability to fold into a secondary structure that can block the replication fork, hence defining the location of a stalled nascent strand, the newly introduced PD motif prevents the initiation of DNA synthesis and can thus be used to modulate Okazaki fragment positioning in vivo. The combined usage of these two motifs creates an opportunity to temporarily capture an RFB at a fixed genomic position. From the data obtained using this well-defined genetic context, we conclude that (i) Okazaki fragment deposition, either through lagging strand synthesis or brought in by a converging forks, limits the size of vulnerable ssDNA gaps at RFBs; (ii) 5 ends of Okazaki fragments at RFBs are subject to EXO1-dependent degradation; and (iii) the 9-1-1 complex protects Okazaki fragments against endonucleolytic attack, hence preventing excessive loss of genetic information, meanwhile acting as a damage sensor for checkpoint signaling (Fig. 4D) (18, 19, 25, 31, 32).
Replication stress is considered a universal phenomenon in tumorigenesis (33). Arrested forks can evolve into highly toxic and recombinogenic DSBs. It was recently found that mutagenic repair, particularly TMEJ, of replication-associated DSBs results in genomic scars, which are found in disease alleles and in cancer genomes (3441). In-depth knowledge on the processing of stalled forks thus contributes to our understanding of genome alterations during cell and organismal evolution, while some of the molecules acting on RFBs are considered promising targets for anticancer therapy (35, 37, 38, 42).
All strains were cultured according to standard methods (43) and grown at 20C unless otherwise stated. See table S1 for a complete strain list.
To obtain independent reversion events, single animals were put on 9-cm nematode growth media (NGM) plates (100 to 200) and grown until the food was exhausted. From each wild-type moving animalcontaining plate, a single animal was transferred to a new plate to obtain a collection of independently derived deletion alleles. Populations were subsequently lysed in lysis buffer, and DNA was polymease chain reaction (PCR)amplified with primers surrounding the G4 motif to obtain the deletion products, which were analyzed by Sanger sequencing. The reversion frequency was determined by assaying 75 cultures, starting with placing one animal on a 6-cm plate seeded with 25 l of the E. coli strain OP50. When half of the control dog-1 populations contained wild-type moving animals, all genotypes were scored for revertants. The reversion frequency is calculated by assuming a Poisson distribution: Reversion frequency = ln(P0)/2n, where P0 is the fraction of plates that did not yield revertants and n is the number of animals that were screened per plate. Frequencies were determined at least in duplicate and normalized to dog-1 animals (set to 1).
Plasmids were injected using standard C. elegans microinjection procedures. In brief, 1 day before injection, L4 animals of strain XF320 [already containing an inserted G4 sequence (4)] were transferred to OP50-containing 6-cm plates and cultured at 15C. The next day, the gonads of young adults were injected with a solution containing pDD162 [20 ng/l; Peft-3::Cas9, Addgene #47549; (44)], pRS27-29 (20 ng/l; U6 promoter + sgRNA, Addgene #75026; see table S3 for details on sgRNA sequence), ssODN (20 ng/l; see table S3 for details), and pBluescript (40 ng/l). Three to four days after injection, 100 to 200 l of levamisol (20 mM in M9 salt solution) were added to the plates to find animals with altered unc-22 alleles. All levamisole-resistant animals were grown to populations for further inspection. unc-22 mutant progeny animals were analyzed for the presence of a PD.
Plasmids were injected using standard C. elegans microinjection procedures. In brief, 1 day before injection, L4 animals were transferred to OP50-containing 6-cm plates and cultured at 15C. The next day, the gonads of young adults were injected with a solution containing pDD162 [20 ng/l; Peft-3::Cas9, Addgene #47549; (44)], pRS32 (20 ng/l; U6 promoter + sgRNA; see table S3 for details on sgRNA sequence), pBluescript (60 ng/l), pGH8 (10 ng/l), pCFJ90 (2.5 ng/l), and pCFJ104 (5 ng/l). Three to four days after injection, mCherry-positive F1 animals were transferred to 6-cm plates. PCRs were performed on animals from plates with germline dpy-10 mutations in the F2 generation with the following primers: 5-CAACGAACTATTCGCGTCAG-3 and 5-GTGGTGGCTCACGAACTTG-3. PCR products were send for Sanger sequencing to obtain the specific mutation.
pSR02 (Addgene #69149) was digested with Nhe I and subsequently ligated to remove eGFP to create pRS67. A PCR was performed on pSR02 with a G4-containing primer to create G4::eGFP::T2A and Xba I restriction sites. This PCR product was cloned into pCloneJet and subsequently cut out with Xba I and inserted into Xba-Idigested pRS67 to obtain rps-27:G4::eGFP::T2A::mCherry (pRS68). T2A::mCherry-NLS was then replaced by egl-13::F2A::wrmScarlet::egl-13 (ordered as gBlock) through NEBuilder Hifi DNA assembly to create pRS88: rps-27:ATG::G4::eGFP::egl-13::F2A::wrmScarlet::egl-13. The F2A sequence was added to the design, as an earlier version of this reporter only displayed eGFP and wrmScarlet activation but not wrmScarlet activation alone. We attributed this to degradation of misfolded eGFP protein because of deletions into eGFP. The addition of this sequence solved this issue. pRS88 was cut with Avr II and Hind III and cloned into miniMos vector pCFJ1663 (Addgene #51484) cut with Spe I and Hind III, generating pRS89. N2 worms were injected with a mix containing pRS89 (10 ng l1), pCFJ601 (50 ng l1; Addgene #34874), pGH8 (10 ng l1), pCFJ90 (2.5 ng l1), and pCFJ104 (5 ng l1). Five hundred microliters of hygromycin (5 mg/ml) was added to the plates 3 days after injection to select for hygromycin-resistant animals. Plates containing living animals were heat-shocked 7 days after injection for 2 hours at 34C to counterselect for animals containing extrachromosomal arrays. Animals were then inspected for the presence of both eGFP and wrmScarlet signal. An eGFP- and wrmScarlet-positive strain was obtained, and this strain was subsequently targeted by CRISPR-HDR to switch off the reporter by introducing stops in every frame directly downstream of the G4 motif and to increase the distance between the base of the G4 and eGFP to 160 bp.
RNAi feeding was performed as previously described (45). In brief, we grew RNAi clones against different targets (see table S4) in 2 ml of LB supplemented with ampicillin. The following day, isopropyl--D-thiogalactopyranoside (IPTG) was added to the RNAi bacteria to induce dsRNA expression for 2 hours. Six-centimeter NGM plates supplemented with ampicillin and IPTG was seeded with 100 l of RNAi bacteria and was kept at room temperature overnight. Five L4 animals were transferred to each RNAi-containing plate. After 3 to 4 days, the animals were rinsed off the plate with M9 and inspected for eGFP and wrmScarlet expression.
Animals of the indicated genotypes were synchronized by hypochlorite treatment, and surviving eggs were hatched in M9 overnight. L1 animals were plated out, and 48 hours later, the animals were rinsed off the plate with M9, sedated with 40 mM NaN3, and inspected for eGFP and wrmScarlet expression. To this end, animals were mounted on microscope slides containing dried 2% agarose pads and inspected for eGFP and wrmScarlet expression using a Zeiss Axio imager D2.
Mutation accumulation (MA) lines were generated by cloning out F1 animals from one hermaphrodite. All experiments were performed at 20C. Each generation, three worms were transferred to new plates. MA lines were maintained for 50 generations (dog-1 exo-1, dog-1, and div-1) or 10 generations (polh-1 polk-1 hus-1, dog-1, and hus-1). After 10 or 50 generations, single animals were cloned out and allowed to generate a full population that was used for DNA isolation. To remove bacteria from the sample and from the animals intestine, rinsed-off worms were washed three times with M9 and subsequently incubated for 2 hours at room temperature while shaking. After allowing the sample to set down, the supernatant was removed, and the QIAGEN Blood and Tissue Kit was used to extract DNA according to the manufacturers protocol with some minor adjustments: 200 l of ATL buffer and 20 l of ProtK were added and incubated for 1.5 hours at 60C in a shaker incubator at 1400 rpm. The samples were spun down for 30 s at 2000 rpm, and the supernatant was transferred to new tubes to prevent blocking of the columns by cellular debris. Then, 5 l of ribonuclease A (100 mg/ml) was added and samples were incubated for 5 to 10 min, after which 200 l of AL buffer was first added (mixed thoroughly) followed by 200 l of EtOH (mixed thoroughly). Spin columns were used and washed with the appropriate buffers, AW1 and AW2, and DNA was eluted in 100 to 150 l of H2O. DNA samples were subsequently prepared according to Illuminas protocol and sequenced on either HiSeq4000 or NovaSeq.
Mapping of paired-end next-generation sequencing (NGS) reads was performed by BWA-MEM (Burrows-Wheeler Aligner). For each MA line, at least three independently grown samples were analyzed (table S2). For strains that were crossed before growing as MA line, we also sequenced generation 0 to filter out background single-nucleotide variants (SNVs) and copy number variations (CNVs) unrelated to the MA experiment, which may segregate differently in subpopulations. For CNV detection, we made use of Pindel, GRIDSS, GATK, and Manta (4649). Only unique events that were supported by at least two callers or called with high confidence (5 unique reads supporting the CNV) by a single caller were included in the analysis. Metadata such as homology, topology, and templated insertions were analyzed and categorized using a custom Java program (data file S2). SNV calling was performed by GATK (data file S2).
To annotate the unc-22 alleles obtained in the unc-22 G4 RFB assay and UV/TMP assay, a custom Java program was written to extract high-confidence sequences from Sanger sequence files; high-confidence sequence defined as a sequence of >30 nt where all nucleotides have an error probability of <0.05. This sequence is then mapped to a reference FASTA file containing the appropriate unc-22 allele using k-mer mapping. Differences between the Sanger sequences and the reference are further classified into wild type, SNV, insertion, deletion, or deletion-insertion (delins). Additional informationsuch as location, homology, and likelihood of templated insertionwas added, leading to output in a TSV format (data file S1).
Animals were synchronized by alkaline hypochlorite treatment (0.5 M NaOH and 2% hypochlorite), and eggs were allowed to hatch overnight. L1 worms were placed on 9-cm NGM agar plates seeded with Escherichia coli (OP50) and grown at 20C. After 48 hours, L4 worms were washed off the plates and treated for 1 hour with TMP (10 g/ml; Sigma-Aldrich, T6137, stock: 100 mg dissolved in 40 ml of acetone) in M9. Animals were then distributed on nonseeded NGM plates and exposed to UVA irradiation (366 nm; CAMAG 29200 Universal UV LAMP) at a dose rate of 160 W/cm2 (Blak-Ray UV meter, model no. J221). Thereafter, animals were transferred to standard 9-cm OP50/NGM plates (10 P0 animals per plate; 75 plates with treated animals and 50 plates with mock-treated animals). Animals of the F2 generation were washed off the plates with 2 mM levamisole and transferred to six-well plates to facilitate scoring of unc-22 mutants that are insensitive to the hypercontracting effects of the drug levamisole. For each well, we searched for a levamisole-resistant animal for 120 s. If found, a single levamisole-resistant animal was picked from the well, and homozygous mutants were grown to a full 9-cm plate. Genomic DNA was isolated and analyzed by PCR and Sanger sequencing. The mutation frequency was calculated assuming a Poisson distribution: MF = ln(P0)/2n, where P0 is the fraction of plates without reverted animals and n is the number of animals that were screened per plate.
Acknowledgments: We thank E. Klaassen and R. Profijt for experimental support. Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). Funding: This work was funded by an ALW OPEN grant (OP.393) from the Netherlands Organization for Scientific Research for Earth and Life Sciences to M.T. Author contributions: R.v.S: Conceptualization, software, data analysis, visualization, validation, and writing. R.R.: Validation. H.B.: Validation. M.T.: Conceptualization, funding acquisition, and writing. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Sequence data can be found in the NCBI SRA repository under project number: PRJNA639450. Some sequences have been previously published and can be found in the NCBI SRA repository under project numbers PRJNA196232 and PRJNA260487. Additional data related to this paper may be requested from the authors.
See the article here:
Preservation of lagging strand integrity at sites of stalled replication by Pol -primase and 9-1-1 complex - Science Advances
- ENCODE: Encyclopedia Of DNA Elements - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 07.05.2010 - The Human Genome [ Coast To Coast AM ] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- NOVA scienceNOW : 51 - Public Genomes, Algae Fuel, Mystery of the Gakkel Ridge, Yoky Matsuoka - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Vincent T. - Genome (Club Remix) - [Preview] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Comparing The Human And Chimpanzee Genomes - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Whole Genome Sequencing and Its Impact on Clinical Care - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Carlos Bustamante -- "Reconstructing the Great Human Diasporas from Genome Variation Data" - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 3 Sad Surprises: The Human Genome Project - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The RFW interviews Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Science Bulletins: Scientists Peer Inside "Superbug" Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome : Live @ Smu's : June 3 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Inoki Genome Federation - Genome 19 - 04 02 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- THE HUMAN GENOME MUSIC PROJECT - CHROMOSOME 1 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genomic Medicine - Bruce Korf (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Human Genome's 'Blockbuster' Potential Undervalued in Bid GSK vs HGSI - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Announcing the Completion of the First Survey of the Entire Human Genome at the White House - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA analysis Part I. Genomic Sequencing - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The Genome Question: Moore vs. Jevons with Bud Mishra - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome-Wide Association Studies - Karen Mohlke (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- New human genome research aids understanding of disease [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- UNC Lineberger scientists lead definition of key lung cancer genome [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- Illumina Announces Expedited Individual Genome Sequencing Service (IGS) [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Genome research given a boost with opening of bioscience facility [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Re-Imagining Our Genes: ENCODE Project Reveals Genome as an Information Processing System [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Illumina unveils upgraded genome sequence service [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- US Personalized Cancer Genome Sequencing Market [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Yale maps “uncharted” genome regions [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Research and Markets: US Personalized Cancer Genome Sequencing Market [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- 3Qs: New clues to unlocking the genome [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Oyster Genome Pries Open Mollusk Evolutionary Shell [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Bangladeshi scientist decodes genome of deadly fungus [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome uncover the stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- The oyster genome reveals stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Diseases of aging map to a few 'hotspots' on the human genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- GnuBIO Awarded $4.5 Million in Funding from the National Human Genome Research Institute to Develop Lower Cost Genome ... [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome mystery unravelled [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Devangshu Datta: What's in a genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Pacific Oyster Genome Shows Stress Adaptation And Complexity Of Shell Formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- UNC Lineberger scientists lead cancer genome analysis of breast cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Encoding the human genome [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Cancer genome analysis of breast cancer: Team identifies genetic causes and similarity to ovarian cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Fungus genome map paves way for 'Snow White' jute variety [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- New online, open access journal focuses on microbial genome announcements [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- By Simply Sharing, Doctors Could Unlock the Genome's Potential [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- Forget the Cloud—Knome Offers Genome Analysis in a Box [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- BGI@CHOP Joint Genome Center to Offer Clinical Next-Generation Sequencing Services [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Holy Bat Virus! Genome Hints At Origin Of SARS-Like Virus [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- Community Fundraising Effort Helps Researchers Sequence Parrot Genome [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- UMass Med professors are sleuths of the genome [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Knome Introduces the knoSYS™100; First Plug-and-Play Human Genome Interpretation System [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- First large scale trial of whole-genome cancer testing for clinical decision-making reported [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Should You Get Your Genome Mapped? [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Surprising differences between apples and pears [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 50-Hour Whole Genome Sequencing Provides Rapid Diagnosis for Children With Genetic Disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- A map of rice genome variation reveals the origin of cultivated rice [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome analysis promises hope for breast cancer patients [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome Alberta Welcomes Alberta Minister of Enterprise and Advanced Education, Stephen Khan and Federal Minister of ... [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fifty-hour whole genome sequencing provides rapid diagnosis for children with genetic disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Will Low-Cost Genome Sequencing Open 'Pandora's Box'? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome testing could help individualize treatments [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Would you get your genome tested? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- The Genome — a Pandora's Box? [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Fast genome test could help sick newborns [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- In-Depth Genome Analysis Moves Toward The Hospital Bed [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Your Verdict On Getting A Genome Test? Bring It On [Last Updated On: October 6th, 2012] [Originally Added On: October 6th, 2012]
- Genome-wide study identifies 8 new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome-wide study identifies eight new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome interpreter vies for place in clinical market [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- The $1,000 Genome: A Bait and Switch? [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai School of Medicine Offers First-Ever Course with Whole Genome Sequencing [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- First whole genome sequencing of multiple pancreatic cancer patients has been outlined [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Cheap genome sequences demand new rules on privacy [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- UConn Gets Grant For Genome Research [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Inconsistent Genome Privacy Laws Need Toughening, Panel Says [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- US panel calls for stronger privacy for genome data [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Genome Canada Board Appoints New Chair [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- The $1,000 Genome Is Almost Here- Are We Ready? [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Global genome effort seeks genetic roots of disease [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Massive encyclopedia helps explain how the human genome works [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Genome evolution and carbon dioxide dynamics [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]