Newly-published spinach genome will make more than Popeye … – Phys.Org

Posted: May 28, 2017 at 7:15 am

May 24, 2017 Spinach plant, Castelltallat, Catalonia. Credit: Victor M. Vicente Selvas / public domain

"I'm strong to the finich, 'cause I eats me spinach!" said Popeye the Sailor Man.

While you may not gulp spinach by the can-fuls, if you love spanakopita or your go-to appetizer is spinach artichoke dip, then you'll be excited to know that new research out of Boyce Thompson Institute (BTI) will make it even easier to improve this nutritious and delicious, leafy green.

Today in Nature Communications, researchers from BTI and the Shanghai Normal University report a new draft genome of Spinacia oleracea, better known as spinach. Additionally, the authors have sequenced the transcriptomes (all the RNA) of 120 cultivated and wild spinach plants, which has allowed them to identify which genetic changes have occurred due to domestication.

"The spinach genome sequence and transcriptome variants developed in this study provide a wealth of valuable information that can be used to breed spinach with better disease-resistance, higher yield and better quality," asserted Zhangjun Fei, the project's lead researcher from BTI.

Better breeding for stronger spinach

Spinach, which is native to central Asia, is now cultivated worldwide, with a reported annual production of 24.3 million tons in 2014. Since it was first domesticated, gardeners and breeders have improved many agronomically important traits, such as leaf quality and nutrition, and over time these improvements have re-shaped the spinach genome. In turn, breeders today can use genomic information to speed up improvements, which is especially important for combatting significant diseases, like downy mildew.

Known as the 'late blight' of spinach, the downy mildew disease has devastated crops throughout California, and has recently popped up in Upstate New York. Armed with a better understanding of the spinach genome, the researchers have identified several genes that may confer resistance to the downy mildew pathogen. Once identified in a resistant variety of spinach, such genes could be quickly transferred to other, possibly more nutritious varieties, boosting their immune systems to fight this disease while still maintaining marketable traits.

Insights into spinach domestication

Of particular interest to the researchers is the discovery that the genomes of cultivated spinach varieties are not too different from their wild progenitors. When a plant is domesticated, its genome will evolve over centuries of selection. In many cases, it gets forced through a bottleneck of genetic changes necessary for cultivation, creating a very different plant from that which was first brought out of the wild. A great example is the comparison of maize (corn) to its ancestor, teosinte.

"By analyzing transcriptome variants of a large collection of cultivated and wild spinach accessions, we found that unlike other vegetable crops such as tomato and cucumber, spinach has a weak domestication bottleneck," explained first author, Chen Jiao.

This was great news because it means there is still much room for spinach improvement, but it also made it tougher to pinpoint genomic markers that could speed up the breeding process. Nonetheless, the team identified many regions in the genome directly attributable to the domestication process, that could be possibly linked to valuable traits, such as bolting, leaf number, and stem length

When asked for her favorite spinach recipe, first author Chen Jiao replied, "I usually make spinach salad for my family twice a week. It is very nutritious and easy to make. I just throw a handful of baby spinach, some croutons and fried bacon, and boiled eggs in a bowl and then drizzle all with bottled dressing."

So the next time you eat a luscious, green spinach salad, thank a scientist for keeping you healthy and strong!

Explore further: Dole recalls some spinach after salmonella found in sample

More information: Nature Communications (2017). DOI: 10.1038/NCOMMS15275

Dole Fresh Vegetables says it's recalling some of its bagged spinach distributed in 13 states as a precaution after a random sample tested positive for salmonella.

California officials say the E. coli bacterium recently discovered in U.S.-produced bags of spinach is found in nearly all Salinas Valley waterways.

Salinity and nutrient-depleted soil are two major constraints in crop production, especially for vegetable crops. In the January 2016 issue of the Journal of the American Society for Horticultural Science, researchers Chenping ...

California health officials said the strain of E. coli bacteria that has killed three people and sickened 201 others has been found near a spinach farm.

A natural compound hidden away in spinach has been shown to reduce food cravings between meals and could help prevent obesity, a Swedish scientist said on Monday.

Far from being a food spoiler, the fluorescent lighting in supermarkets actually can boost the nutritional value of fresh spinach, scientists are reporting. The finding could lead to improved ways of preserving and enhancing ...

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

(Phys.org)Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast U.S. Shelf have found that commercially important species will continue to shift their distribution ...

If you open Google and start typing "Chinese cave gecko", the text will auto-populate to "Chinese cave gecko for sale" just US$150, with delivery. This extremely rare species is just one of an increasingly large number ...

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

Almost 150 years after Charles Darwin first proposed a little-known prediction from his theory of sexual selection, researchers have found that male moths with larger antennae are better at detecting female signals.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

More here:
Newly-published spinach genome will make more than Popeye ... - Phys.Org

Related Posts