The Human Genome Project was an ambitious initiative to sequence every piece of human DNA. The project drew together collaborators from research institutions around the world, including MIT's Whitehead Institute for Biomedical Research, and was finally completed in 2003. Now, over two decades later, MIT Professor Jonathan Weissman and colleagues have gone beyond the sequence to present the first comprehensive functional map of genes that are expressed in human cells. The data from this project, published online June 9 in Cell, ties each gene to its job in the cell, and is the culmination of years of collaboration on the single-cell sequencing method Perturb-seq.
The data are available for other scientists to use. Its a big resource in the way the human genome is a big resource, in that you can go in and do discovery-based research, says Weissman, who is also a member of the Whitehead Institute and an investigator with the Howard Hughes Medical Institute. Rather than defining ahead of time what biology you're going to be looking at, you have this map of the genotype-phenotype relationships and you can go in and screen the database without having to do any experiments.
The screen allowed the researchers to delve into diverse biological questions. They used it to explore the cellular effects of genes with unknown functions, to investigate the response of mitochondria to stress, and to screen for genes that cause chromosomes to be lost or gained, a phenotype that has proved difficult to study in the past. I think this dataset is going to enable all sorts of analyses that we haven't even thought up yet by people who come from other parts of biology, and suddenly they just have this available to draw on, says former Weissman Lab postdoc Tom Norman, a co-senior author of the paper.
Pioneering Perturb-seq
The project takes advantage of the Perturb-seq approach that makes it possible to follow the impact of turning on or off genes with unprecedented depth. This method was first published in 2016 by a group of researchers including Weissman and fellow MIT professor Aviv Regev, but could only be used on small sets of genes and at great expense.
The massive Perturb-seq map was made possible by foundational work from Joseph Replogle, an MD-PhD student in Weissmans lab and co-first author of the present paper. Replogle, in collaboration with Norman, who now leads a lab at Memorial Sloan Kettering Cancer Center; Britt Adamson, an assistant professor in the Department of Molecular Biology at Princeton University; and a group at 10x Genomics, set out to create a new version of Perturb-seq that could be scaled up. The researchers published a proof-of-concept paper in Nature Biotechnology in 2020.
The Perturb-seq method uses CRISPR-Cas9 genome editing to introduce genetic changes into cells, and then uses single-cell RNA sequencing to capture information about the RNAs that are expressed resulting from a given genetic change. Because RNAs control all aspects of how cells behave, this method can help decode the many cellular effects of genetic changes.
Since their initial proof-of-concept paper, Weissman, Regev, and others have used this sequencing method on smaller scales. For example, the researchers used Perturb-seq in 2021 to explore how human and viral genes interact over the course of an infection with HCMV, a common herpesvirus.
In the new study, Replogle and collaborators including Reuben Saunders, a graduate student in Weissmans lab and co-first author of the paper, scaled up the method to the entire genome. Using human blood cancer cell lines as well noncancerous cells derived from the retina, he performed Perturb-seq across more than 2.5 million cells, and used the data to build a comprehensive map tying genotypes to phenotypes.
Delving into the data
Upon completing the screen, the researchers decided to put their new dataset to use and examine a few biological questions. The advantage of Perturb-seq is it lets you get a big dataset in an unbiased way, says Tom Norman. No one knows entirely what the limits are of what you can get out of that kind of dataset. Now, the question is, what do you actually do with it?
The first, most obvious application was to look into genes with unknown functions. Because the screen also read out phenotypes of many known genes, the researchers could use the data to compare unknown genes to known ones and look for similar transcriptional outcomes, which could suggest the gene products worked together as part of a larger complex.
The mutation of one gene called C7orf26 in particular stood out. Researchers noticed that genes whose removal led to a similar phenotype were part of a protein complex called Integrator that played a role in creating small nuclear RNAs. The Integrator complex is made up of many smaller subunits previous studies had suggested 14 individual proteins and the researchers were able to confirm that C7orf26 made up a 15th component of the complex.
They also discovered that the 15 subunits worked together in smaller modules to perform specific functions within the Integrator complex. Absent this thousand-foot-high view of the situation, it was not so clear that these different modules were so functionally distinct, says Saunders.
Another perk of Perturb-seq is that because the assay focuses on single cells, the researchers could use the data to look at more complex phenotypes that become muddied when they are studied together with data from other cells. We often take all the cells where gene X is knocked down and average them together to look at how they changed, Weissman says. But sometimes when you knock down a gene, different cells that are losing that same gene behave differently, and that behavior may be missed by the average.
The researchers found that a subset of genes whose removal led to different outcomes from cell to cell were responsible for chromosome segregation. Their removal was causing cells to lose a chromosome or pick up an extra one, a condition known as aneuploidy. You couldn't predict what the transcriptional response to losing this gene was because it depended on the secondary effect of what chromosome you gained or lost, Weissman says. We realized we could then turn this around and create this composite phenotype looking for signatures of chromosomes being gained and lost. In this way, we've done the first genome-wide screen for factors that are required for the correct segregation of DNA.
I think the aneuploidy study is the most interesting application of this data so far, Norman says. It captures a phenotype that you can only get using a single-cell readout. You cant go after it any other way.
The researchers also used their dataset to study how mitochondria responded to stress. Mitochondria, which evolved from free-living bacteria, carry 13 genes in their genomes. Within the nuclear DNA, around 1,000 genes are somehow related to mitochondrial function. People have been interested for a long time in how nuclear and mitochondrial DNA are coordinated and regulated in different cellular conditions, especially when a cell is stressed, Replogle says.
The researchers found that when they perturbed different mitochondria-related genes, the nuclear genome responded similarly to many different genetic changes. However, the mitochondrial genome responses were much more variable.
Theres still an open question of why mitochondria still have their own DNA, said Replogle. A big-picture takeaway from our work is that one benefit of having a separate mitochondrial genome might be having localized or very specific genetic regulation in response to different stressors.
If you have one mitochondria thats broken, and another one that is broken in a different way, those mitochondria could be responding differentially, Weissman says.
In the future, the researchers hope to use Perturb-seq on different types of cells besides the cancer cell line they started in. They also hope to continue to explore their map of gene functions, and hope others will do the same. This really is the culmination of many years of work by the authors and other collaborators, and Im really pleased to see it continue to succeed and expand, says Norman.
Originally posted here:
New CRISPR-based map ties every human gene to its function - MIT News
- ENCODE: Encyclopedia Of DNA Elements - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 07.05.2010 - The Human Genome [ Coast To Coast AM ] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- NOVA scienceNOW : 51 - Public Genomes, Algae Fuel, Mystery of the Gakkel Ridge, Yoky Matsuoka - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Vincent T. - Genome (Club Remix) - [Preview] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Comparing The Human And Chimpanzee Genomes - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Whole Genome Sequencing and Its Impact on Clinical Care - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Carlos Bustamante -- "Reconstructing the Great Human Diasporas from Genome Variation Data" - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 3 Sad Surprises: The Human Genome Project - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The RFW interviews Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Science Bulletins: Scientists Peer Inside "Superbug" Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome : Live @ Smu's : June 3 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Inoki Genome Federation - Genome 19 - 04 02 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- THE HUMAN GENOME MUSIC PROJECT - CHROMOSOME 1 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genomic Medicine - Bruce Korf (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Human Genome's 'Blockbuster' Potential Undervalued in Bid GSK vs HGSI - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Announcing the Completion of the First Survey of the Entire Human Genome at the White House - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA analysis Part I. Genomic Sequencing - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The Genome Question: Moore vs. Jevons with Bud Mishra - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome-Wide Association Studies - Karen Mohlke (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- New human genome research aids understanding of disease [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- UNC Lineberger scientists lead definition of key lung cancer genome [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- Illumina Announces Expedited Individual Genome Sequencing Service (IGS) [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Genome research given a boost with opening of bioscience facility [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Re-Imagining Our Genes: ENCODE Project Reveals Genome as an Information Processing System [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Illumina unveils upgraded genome sequence service [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- US Personalized Cancer Genome Sequencing Market [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Yale maps “uncharted” genome regions [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Research and Markets: US Personalized Cancer Genome Sequencing Market [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- 3Qs: New clues to unlocking the genome [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Oyster Genome Pries Open Mollusk Evolutionary Shell [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Bangladeshi scientist decodes genome of deadly fungus [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome uncover the stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- The oyster genome reveals stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Diseases of aging map to a few 'hotspots' on the human genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- GnuBIO Awarded $4.5 Million in Funding from the National Human Genome Research Institute to Develop Lower Cost Genome ... [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome mystery unravelled [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Devangshu Datta: What's in a genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Pacific Oyster Genome Shows Stress Adaptation And Complexity Of Shell Formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- UNC Lineberger scientists lead cancer genome analysis of breast cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Encoding the human genome [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Cancer genome analysis of breast cancer: Team identifies genetic causes and similarity to ovarian cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Fungus genome map paves way for 'Snow White' jute variety [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- New online, open access journal focuses on microbial genome announcements [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- By Simply Sharing, Doctors Could Unlock the Genome's Potential [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- Forget the Cloud—Knome Offers Genome Analysis in a Box [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- BGI@CHOP Joint Genome Center to Offer Clinical Next-Generation Sequencing Services [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Holy Bat Virus! Genome Hints At Origin Of SARS-Like Virus [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- Community Fundraising Effort Helps Researchers Sequence Parrot Genome [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- UMass Med professors are sleuths of the genome [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Knome Introduces the knoSYS™100; First Plug-and-Play Human Genome Interpretation System [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- First large scale trial of whole-genome cancer testing for clinical decision-making reported [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Should You Get Your Genome Mapped? [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Surprising differences between apples and pears [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 50-Hour Whole Genome Sequencing Provides Rapid Diagnosis for Children With Genetic Disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- A map of rice genome variation reveals the origin of cultivated rice [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome analysis promises hope for breast cancer patients [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome Alberta Welcomes Alberta Minister of Enterprise and Advanced Education, Stephen Khan and Federal Minister of ... [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fifty-hour whole genome sequencing provides rapid diagnosis for children with genetic disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Will Low-Cost Genome Sequencing Open 'Pandora's Box'? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome testing could help individualize treatments [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Would you get your genome tested? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- The Genome — a Pandora's Box? [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Fast genome test could help sick newborns [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- In-Depth Genome Analysis Moves Toward The Hospital Bed [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Your Verdict On Getting A Genome Test? Bring It On [Last Updated On: October 6th, 2012] [Originally Added On: October 6th, 2012]
- Genome-wide study identifies 8 new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome-wide study identifies eight new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome interpreter vies for place in clinical market [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- The $1,000 Genome: A Bait and Switch? [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai School of Medicine Offers First-Ever Course with Whole Genome Sequencing [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- First whole genome sequencing of multiple pancreatic cancer patients has been outlined [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Cheap genome sequences demand new rules on privacy [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- UConn Gets Grant For Genome Research [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Inconsistent Genome Privacy Laws Need Toughening, Panel Says [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- US panel calls for stronger privacy for genome data [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Genome Canada Board Appoints New Chair [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- The $1,000 Genome Is Almost Here- Are We Ready? [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Global genome effort seeks genetic roots of disease [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Massive encyclopedia helps explain how the human genome works [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Genome evolution and carbon dioxide dynamics [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]