Multi-omics resources for the Australian southern stuttering frog (Mixophyes australis) reveal assorted antimicrobial … – Nature.com

Posted: February 18, 2024 at 10:06 am

Lewin, H. A. et al. Earth BioGenome Project: Sequencing life for the future of life. Proc. Natl. Acad. Sci. 115(17), 43254333 (2018).

Article ADS CAS PubMed PubMed Central Google Scholar

Lewin, H. A. et al. The Earth BioGenome Project 2020: Starting the clock. Proc. Natl. Acad. Sci. U S A 119(4), e2115635118 (2022).

Article CAS PubMed PubMed Central Google Scholar

Hotaling, S., Kelley, J. & Frandsen, P. Toward a genome sequence for every animal: Where are we now?. Proc. Natl. Acad. Sci. 118, e2109019118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Horgan, R. & Kenny, L. Omic technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 13, 189 (2011).

Article Google Scholar

Formenti, G. et al. The era of reference genomes in conservation genomics. Trends Ecol. Evol. 37, 197 (2022).

Article CAS PubMed Google Scholar

Paez, S. et al. Reference genomes for conservation. Science 377(6604), 364366 (2022).

Article ADS CAS PubMed Google Scholar

Wong, A. K. et al. Decoding disease: From genomes to networks to phenotypes. Nat. Rev. Genet. 22(12), 774790 (2021).

Article CAS PubMed Google Scholar

Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50(D1), D20-d26 (2022).

Article CAS PubMed Google Scholar

AmphibiaWeb. Amphibian Species by the Numbers (University of California, 2022).

Google Scholar

Lamichhaney, S. et al. A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum. Proc. Natl. Acad. Sci. USA 118(11), e2011649118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Li, Q. et al. A draft genome assembly of the eastern banjo frog Limnodynastes dumerilii dumerilii (Anura: Limnodynastidae). Gigabyte 2020, 113 (2020).

Article Google Scholar

Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592(7856), 737746 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Farquharson, K. et al. The genome sequence of the critically endangered Kroombit tinkerfrog (Taudactylus pleione) [version 1; peer review: 2 approved]. F1000Research 12, 845 (2023).

Article PubMed PubMed Central Google Scholar

Bredeson, J. V. et al. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat. Commun. 15(1), 579 (2024).

Article ADS CAS PubMed PubMed Central Google Scholar

Liedtke, H. C. et al. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat. Ecol. Evol. 2(11), 17921799 (2018).

Article PubMed Google Scholar

Sun, Y.-B., Zhang, Y. & Wang, K. Perspectives on studying molecular adaptations of amphibians in the genomic era. Zool. Res. 41(4), 351 (2020).

Article CAS PubMed PubMed Central Google Scholar

Seidl, F. et al. Genome of Spea multiplicata, a rapidly developing, phenotypically plastic, and desert-adapted spadefoot toad. G3 Genes Genomes Genetics 9(12), 39093919 (2019).

Article CAS PubMed PubMed Central Google Scholar

Novikova, P. Y. et al. Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genet. 16(5), e1008769 (2020).

Article CAS PubMed PubMed Central Google Scholar

Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625), 336343 (2016).

Article ADS CAS PubMed PubMed Central Google Scholar

Pollard, M. O. et al. Long reads: Their purpose and place. Hum. Mol. Genet. 27(R2), R234-r241 (2018).

Article CAS PubMed PubMed Central Google Scholar

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289293 (2009).

Article ADS CAS PubMed PubMed Central Google Scholar

Streicher, J. W. The genome sequence of the common frog, Rana temporaria Linnaeus 1758. Wellcome Open Res. 6, 286 (2021).

Article PubMed PubMed Central Google Scholar

Wang, G., Li, X. & Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44(D1), D1087D1093 (2016).

Article CAS PubMed Google Scholar

Huan, Y. C. et al. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 11, 582779 (2020).

Article PubMed PubMed Central Google Scholar

Hanson, M. A., Lemaitre, B. & Unckless, R. L. Dynamic evolution of antimicrobial peptides underscores trade-offs between immunity and ecological fitness. Front. Immunol. 10, 2620 (2019).

Article CAS PubMed PubMed Central Google Scholar

Mercer, D. K. et al. NP213 (Novexatin): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med. Mycol. 58(8), 10641072 (2020).

Article CAS PubMed PubMed Central Google Scholar

Ridyard, K. E. & Overhage, J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics 10(6), 650 (2021).

Article CAS PubMed PubMed Central Google Scholar

Wang, Q. et al. Diversity of antimicrobial peptides in three partially sympatric frog species in Northeast Asia and implications for evolution. Genes (Basel) 11(2), 158 (2020).

Article MathSciNet PubMed PubMed Central Google Scholar

Varga, J. F. A., Bui-Marinos, M. P. & Katzenback, B. A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol. 9, 3128 (2018).

Article CAS PubMed Google Scholar

Ladram, A. & Nicolas, P. Antimicrobial peptides from frog skin: Biodiversity and therapeutic promises. Front. Biosci. Landmark 21, 13411371 (2016).

Article CAS Google Scholar

Novkovi, M. et al. DADP: The database of anuran defense peptides. Bioinformatics 28(10), 14061407 (2012).

Article PubMed Google Scholar

Yang, Y. et al. A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infection by driving phagocyte influx. eLife 11, e72849 (2022).

Article CAS PubMed PubMed Central Google Scholar

Hao, X. et al. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 43(2), 677685 (2012).

Article CAS PubMed Google Scholar

He, X. et al. A frog-derived immunomodulatory peptide promotes cutaneous wound healing by regulating cellular response. Front. Immunol. 10, 2421 (2019).

Article CAS PubMed PubMed Central Google Scholar

Peel, E. et al. Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Sci. Rep. 6, 35019 (2016).

Article ADS CAS PubMed PubMed Central Google Scholar

Dalla Valle, L. et al. Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev. Comp. Immunol. 36(1), 222229 (2012).

Article CAS PubMed Google Scholar

Wang, M. et al. Identification and characterization of antimicrobial peptides from butterflies: An integrated bioinformatics and experimental study. Front. Microbiol. 12, 720381 (2021).

Article ADS PubMed PubMed Central Google Scholar

Prez de la Lastra, J. M. et al. Bioinformatic analysis of genome-predicted bat cathelicidins. Molecules 26(6), 1811 (2021).

Article PubMed PubMed Central Google Scholar

Yoo, W. G. et al. Genome-wide identification of antimicrobial peptides in the liver fluke, Clonorchis sinensis. Bioinformation 11(1), 1720 (2015).

Article PubMed PubMed Central Google Scholar

Brennan, I. G. et al. Populating a continent: Phylogenomics reveal the timing of Australian frog diversification. Syst. Biol. https://doi.org/10.1093/sysbio/syad048 (2023).

Article PubMed Google Scholar

Irisarri, I. et al. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13(1), 626 (2012).

Article PubMed PubMed Central Google Scholar

Mahony, M. et al. A new species of barred frog, Mixophyes (Anura: Myobatrachidae) from south-eastern Australia identified by molecular genetic analyses. Zootaxa 5297, 301336 (2023).

Article PubMed Google Scholar

Barker, J., Grigg, G. & Tyler, M. J. A Field Guide to Australian frogs (Surrey Beatty and Sons, 1995).

Google Scholar

Cogger, H. G. Reptiles and Amphibians of Australia 6th edn. (Reed New Holland, 2000).

Google Scholar

Murray, B. R. & Hose, G. C. Life-history and ecological correlates of decline and extinction in the endemic Australian frog fauna. Austral Ecol. 30(5), 564571 (2005).

Article Google Scholar

Woodhams, D. C. et al. Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim. Conserv. 10(4), 409417 (2007).

Article Google Scholar

Hollanders, M. et al. Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality. Ecol. Appl. 33(1), e2724 (2023).

Article PubMed Google Scholar

Grant, J. R. et al. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51(W1), W484-w492 (2023).

Article PubMed PubMed Central Google Scholar

Simo, F. A. et al. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 32103212 (2015).

Article PubMed Google Scholar

Donnellan, S. C., Mahony, M. J. & Davies, M. A new species of mixophyes (Anura: Leptodactylidae) and first record of the genus in New Guinea. Herpetologica 46(3), 266274 (1990).

Google Scholar

Read more here:
Multi-omics resources for the Australian southern stuttering frog (Mixophyes australis) reveal assorted antimicrobial ... - Nature.com

Related Posts