Feasibility of genomic skimming on the ONT minION sequencer
The term genomic skimming was first coined by in 2012 by Straub et al. (2012)20 as a way to utilize shallow sequencing of gDNA to obtain relatively deeper coverage of high-copy portions of the genome, including mitogenomes. In combining genomic skimming with ONT long-read sequencing, we successfully reconstructed a complete marmoset mitogenome without the need for prior PCR enrichment, using standard molecular biology equipment, and a compact portable sequencer that connects to a laptop computer. Preparation of genetic material for ONT sequencing in this study took less than a full day, and sequencing reads were available within 48 hours. Although the coverage of our reconstructed ONT mitogenome was low-medium (9x) and one of the largest sources of error for the ONT reads were missing reads in long homopolymer runs, the ONT data showed a high degree of concordance with gold standard mtDNA Sanger sequencing reads for the same individual. Hence, this work along with a number of previous studies (e.g.,5,21), highlights ONT-based genomic skimming as holding great potential for enhancing mitogenomic and diversity studies of data-deficient and/or non-model organisms.
A major challenge in ONT sequencing is the relatively high sequencing error (5%-15%), but the application of computational polishing significantly reduces errors of raw ONT data (e.g.22). Another challenge with ONT methodologies is the large amount of input DNA needed for sequencing relative to other types of methods, particularly PCR and Sanger sequencing. Multiplexing samples onto the same flow cell is one way to reduce the required amount of per sample DNA, and currently ONT chemistry allows for up to 24 individual gDNA samples to be multiplex per flow cell. Another option to improve mitogenome coverage from genome skimming shotgun data, especially for sensitive applications is to use sample preparation approaches that specifically enrich for mtDNA (e.g., https://www.protocols.io/view/isolation-of-high-quality-highly-enriched-mitochon-mycc7sw).
It is important to point out that our approach represents a starting point from which methodological aspects could be adjusted to further improve and modify our protocol. An important consideration for long-read sequencing is access to high-quality DNA which is not degraded. For marmosets especially, another consideration for input DNA is whether chimerism could bias genomic analysis or not, as levels of chimerism vary between marmoset biological tissues. Marmosets usually give birth to twins that are natural hematopoietic chimeras due to cellular exchange from placental vascular anastomoses during early fetal development23,24,25. This chimerism may result in the presence of up to 4 alleles of a single-copy genomic locus within a single individual. In marmosets, skin shows some of the lowest amounts of chimerism while blood is highly chimeric24,25,26. Depending on project design, high levels of chimerism can bias base calling of nuclear genome derived sequence reads, but this is less of a concern for mitogenomic studies as mtDNA is haploid and transmitted maternally.
In this work, we obtained DNA from a ear skin biopsy, but this represents a minimally invasive source of genetic material. As an epidermal tissue, buccal swabs are a relatively less invasive source of low-chimerism epidermal DNA. Recently, urine has also been shown to be a non-invasive source of high-quality DNA27, but the amount of chimerism is currently not known for marmoset urine. Urine represents a potentially non-invasive genetic tissue which could be combined with genomic skimming of highly endangered non-model organisms, particularly within captive settings.
Our original aim in this work was to reconstruct the mitogenome of the endangered buffy-tufted-ear marmoset with a PCR-free genomic skimming approach with minimal technical requirements. We successfully reconstructed the full mitogenome from a captive individual possessing a C. aurita phenotype, but the mitogenomic lineage showed unexpected discordance with this phenotype. While we expected the mitogenome of the sampled individual to be that of C. aurita, instead the sampled individual possessed a C. penicillata mitogenomic lineage. Our results also represent the first ever known instance of one-way genetic introgression from C. penicillata into C. aurita, and indicate that our sampled marmoset was actually a cryptic C. aurita x C. penicillata hybrid.
Although a number of scenarios could explain the phenotypic-genotypic discordance we uncovered in individual BJT022, this case is likely the result of relatively recent anthropogenic hybridization between a C. penicillata female and C. aurita male. Callithrix species are naturally allo- and parapatric, and natural hybridization occurs between marmoset species under secondary contact8. Past natural genetic introgression between C. aurita and C. penicillata would most likely have occurred in the natural contact zone between these species that exists in the transitional areas between the Cerrado and Atlantic Forest Biomes of southeastern Brazil. Because C. penicillata mitogenomic clades tend to be well defined by their biogeographic origin7, for past, natural introgresssion of C. penicillata into C. aurita, we would expect haplotype BJT022 to have grouped with the C. penicillata Atlantic Forest/Cerrado clade. However, that is not the case, as the BJT022 haplotype grouped instead within the C. penicillata Caatinga Clade. There is a relatively large geographic separation between the Caatinga biome of northeastern Brazil and the portion of the southeastern Brazilian Atlantic Forest that houses the natural region of C. aurita. This wide geographic gap highly reduces the possibility of past natural interbreeding between Caatinga populations of C. penicillata and any C. aurita population.
We could also consider incomplete lineage sorting to explain the phylogenetic position of the BJT022 mitogenomic haplotype as reflecting a C. aurita mitogenome that sorted within a C. penicillata phylogenetic clade instead of a C. aurita clade. Overall, we see strong consistency in grouping patterns of mitogenomic haplotypes within their expected Callithrix phylogenetic clades. Further, C. aurita and the jacchus marmoset subgroup (C. geofforyi, C. kuhlii, C. jacchus, C. penicillata) diverged about 3.54 million years ago7, leaving relatively more time for mitochondrial lineage sorting between C. aurita and the jacchus group than among jacchus group species. While incomplete lineage sorting has indeed been used to explain C. penicillata and C. kuhlii polyphyly7, we still do see clear grouping patterns of C. kuhlii and C. penicillata mitogenomic clades according to their species of origin. Therefore, the strong tendency for Callithrix mitogenomic lineages to group within their expected clades reduces the likelihood of incomplete lineage sorting of mitogenomic lineages between C. aurita and the jacchus group.
The similarity of the case of BJT022 to other likely instances of anthropogenic Callithrix hybridization provide further support for BJT022 representing anthropogenic interbreeding between C. aurita and C. penicillata. Callithrix penicillata and C. jacchus have been introduced into the native range of C. aurita in southeastern Brazil largely as a result of the illegal pet trade and subsequent releases of exotic marmosets into forest fragments7,8. Malukiewicz et al. (2021)7 recently found evidence of genetic introgression from of exotic C. jacchus into C. aurita within the metropolitan area of the city of So Paulo. A cryptic C. aurita hybrid sampled by Malukiewicz et al.7 originates from the municipality of Mogi das Cruzes, which lies in the eastern portion of metropolitan So Paulo8,28. Following zoological records, BJT022 originated from the municipality of So Jose dos Campos, which also lies in the eastern portion of metropolitan So Paulo. These cryptic hybrids also likely represent an advanced stage of anthropogenic hybridization between native C. aurita and exotic jacchus group species. First generation and early generation aurita and jacchus group marmoset hybrids are known to possess a distinct koala bear appearance10,11,29. As this is not the phenotype seen for BJT022 and the cryptic C. aurita hybrids from Malukiewicz et al.7, this observation suggests that these cases of anthropogenic hybridization arose through backcrossing of an earlier non-cryptic C. aurita x Callithrix sp. hybrid with C. aurita. Eventually these backcrosses led to the genomic capture of introgressed jacchus group mitogenome lineages by the C. aurita populations of the eastern portion of the So Paulo metropolitan area.
The above results are alarming since they suggest that genetic introgression is underway from exotic, invasive marmosets to the endangered, native marmosets of southeastern Brazil. At this time, it is not possible to determine how board this pattern is at the geographic, genomic and species levels, and whether introgression is only unidirectional and exactly which exotic and native species are involved. Specifically for C. aurita, unidirectional genetic introgression from invasive marmosets as well as cryptic hybridization is worrying due to the species threatened conservation status. A small number of captive facilities around southeastern Brazil are currently breeding captive C. aurita for eventual reintroductions into the wild8,12. Individuals within these captive populations should be confirmed both genetically and phenotypically as not being of hybrid origin, as to avoid introducing exogenous genetic material into the captive population and subsequently into the wild. Additionally, further genetic information is needed for wild C. aurita populations to not only characterize diversity within the species, but also to better assess the occurrence of hybridization between exotic and native marmosets in southeastern Brazil. This information is critical for defining genetic diversity of C. aurita and maintaining species genetic integrity in the wild and captivity.
The buffy-tufted-ear marmoset is not only critically endangered but also highly data-deficient in terms of genetic information. The limited number of genetic studies involving C. aurita have used the mtDNA control region13,15, COI10, and the mitogenome7 for phylogenetic study of Callithrix mtDNA lineages, species identification, and detection of hybridization. The phylogenies obtained by us and Malukiewicz et al. (2021)7 do show some geographical separation between C. aurita mitogenome haplotypes originating from different portions of the species natural range. Our calculation of Callithrix mtDNA diversity indexes based on data from Malukiewicz et al. (2021)7 show that diversity in C. aurita is still comparable to that of other Callithrix species. However, a large sampling effort of C. aurita in terms of individual numbers and across the species range is needed for accurate determination of current levels of species standing genetic variation. Additionally, surveys should be conducted of the standing genetic variation levels of the captive C. aurita population. These data are crucial for understanding anthropogenic impacts on the species as well for making appropriate decisions for species conservation.
The application of genomic skimming based on portable ONT long-read technology can be applied to address several of these knowledge gaps for C. aurita. First, with large-scale sampling of wild and captive C. aurita, genetic diversity estimates, demographic history, and other evolutionary analyses can be calculated relatively easily from mitogenomic data. Given the relatively fast turnaround time to obtain sequencing data from the minION, such data could be quickly obtained for a primate as highly endangered as C. aurita, without weeks or months long wait times for sequencing data. Laboratory setup of the minION also does not require any additional special equipment, which also makes genomic work with highly endangered species as C. aurita accessible for investigators under relatively constrained budgets.
Callithrix auritas sister species Callithrix flaviceps faces a similar plight as C. aurita, but with an adult population estimated to be at about 2000 adult individuals30. Currently there are also plans to breed C. flaviceps in captivity for eventual wild reintroduction, but currently there is, to our knowledge, no genetic data available for this species. Thus, the same sort of sampling and research efforts are needed for C. flaviceps as for C. aurita, perhaps even more urgently for the former species given its smaller population. As such, C. flaviceps is a good candidate case for the adaptation of techniques such as genomic skimming and low-cost desktop sequencing to rapidly increase genomic resources for a non-model species for conservation and evolutionary studies.
In the case of marmosets, while mitogenomics shows great potential for usage in evolutionary and conservation studies, we strongly urge against sole use of mtDNA markers for identification of species and hybrids. As the results of this study, as well as that of Malukiewicz et al. (2021)7 clearly show, cryptic hybrids can easily be mistaken for species, and had we only depended on mtDNA results we would have misidentified three cryptic Callithrix hybrids as C. jacchus and C. penicillata. Instances of cryptic hybrids have also been shown among natural C. jacchus x C. penicillata hybrids25. All of these instances underline the need to use several lines of evidence for taxanomic identification of marmoset individuals, particularly due to widespread anthropogenic hybridization among marmosets. We used a combination of phenotypic and mitochondrial data to classify the sampled individual BJT022 as a cryptic hybrid. As mitochondrial DNA is maternally transmitted, it is also not possible to genetically identify the paternal lineage of hybrids without further use of autosomal or Y-chromosome genetic markers. When ever phenotypic data are available, these data should be used jointly with molecular data for identification or classification of a marmoset individual as belonging to a specific species or hybrid type. Indeed, the integrated use of phenotypic and molecular approaches will lead to a better understand the phenomena that involve hybridization processes31.
Brazilian legal instruments that protect C. aurita consider hybridization a major threat to the survival of this species8,12. In this report, we have uncovered the first known case of cryptic hybridization between C. aurita and C. penicillata, which may represent a larger trend of genetic introgression from exotic into native marmosets in southeastern Brazil. Our findings are based on the combination of two recent innovations in the field of genomics, that of genomic skimming and portable long-read sequencing on the ONT minION. Given that C. aurita is still very deficient for genetic data, our approach provides a substantial advance in making more genomic data available for one of the worlds most endangered primates. Genomic skimming based on ONT sequencing can be integrated easily with phenotypic and other genetic data to quickly make new information accessible on species biodiversity and hybridization. Such data can then be utilized within the legal Brazilian framework to protect endangered species like C. aurita. More specifically, rapid access to emerging biological information on such species leads to more informed decisions on updating or modifying legal actions for protecting endangered fauna. The ONT genomic skimming approach we present here can be further utilized and optimized to more rapidly generate genomic information without the need for specialized technological infrastructure nor the need for a priori genomic information.
See original here:
Genomic skimming and nanopore sequencing uncover cryptic hybridization in one of world's most threatened primates | Scientific Reports - Nature.com
- ENCODE: Encyclopedia Of DNA Elements - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 07.05.2010 - The Human Genome [ Coast To Coast AM ] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- NOVA scienceNOW : 51 - Public Genomes, Algae Fuel, Mystery of the Gakkel Ridge, Yoky Matsuoka - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Vincent T. - Genome (Club Remix) - [Preview] - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Comparing The Human And Chimpanzee Genomes - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Whole Genome Sequencing and Its Impact on Clinical Care - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Carlos Bustamante -- "Reconstructing the Great Human Diasporas from Genome Variation Data" - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 3 Sad Surprises: The Human Genome Project - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The RFW interviews Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Science Bulletins: Scientists Peer Inside "Superbug" Genome - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome : Live @ Smu's : June 3 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Inoki Genome Federation - Genome 19 - 04 02 2012 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- THE HUMAN GENOME MUSIC PROJECT - CHROMOSOME 1 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genomic Medicine - Bruce Korf (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Human Genome's 'Blockbuster' Potential Undervalued in Bid GSK vs HGSI - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Announcing the Completion of the First Survey of the Entire Human Genome at the White House - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA analysis Part I. Genomic Sequencing - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- The Genome Question: Moore vs. Jevons with Bud Mishra - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genome-Wide Association Studies - Karen Mohlke (2012) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- New human genome research aids understanding of disease [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- UNC Lineberger scientists lead definition of key lung cancer genome [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- Illumina Announces Expedited Individual Genome Sequencing Service (IGS) [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Genome research given a boost with opening of bioscience facility [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Re-Imagining Our Genes: ENCODE Project Reveals Genome as an Information Processing System [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Illumina unveils upgraded genome sequence service [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- US Personalized Cancer Genome Sequencing Market [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Yale maps “uncharted” genome regions [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Research and Markets: US Personalized Cancer Genome Sequencing Market [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- 3Qs: New clues to unlocking the genome [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Oyster Genome Pries Open Mollusk Evolutionary Shell [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Bangladeshi scientist decodes genome of deadly fungus [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome uncover the stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- The oyster genome reveals stress adaptation and complexity of shell formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Diseases of aging map to a few 'hotspots' on the human genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- GnuBIO Awarded $4.5 Million in Funding from the National Human Genome Research Institute to Develop Lower Cost Genome ... [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Oyster genome mystery unravelled [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Devangshu Datta: What's in a genome [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Pacific Oyster Genome Shows Stress Adaptation And Complexity Of Shell Formation [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- UNC Lineberger scientists lead cancer genome analysis of breast cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Encoding the human genome [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Cancer genome analysis of breast cancer: Team identifies genetic causes and similarity to ovarian cancer [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- Fungus genome map paves way for 'Snow White' jute variety [Last Updated On: September 24th, 2012] [Originally Added On: September 24th, 2012]
- New online, open access journal focuses on microbial genome announcements [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- By Simply Sharing, Doctors Could Unlock the Genome's Potential [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- Forget the Cloud—Knome Offers Genome Analysis in a Box [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- BGI@CHOP Joint Genome Center to Offer Clinical Next-Generation Sequencing Services [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Holy Bat Virus! Genome Hints At Origin Of SARS-Like Virus [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- Community Fundraising Effort Helps Researchers Sequence Parrot Genome [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- UMass Med professors are sleuths of the genome [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Knome Introduces the knoSYS™100; First Plug-and-Play Human Genome Interpretation System [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- First large scale trial of whole-genome cancer testing for clinical decision-making reported [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Should You Get Your Genome Mapped? [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Surprising differences between apples and pears [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 50-Hour Whole Genome Sequencing Provides Rapid Diagnosis for Children With Genetic Disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- A map of rice genome variation reveals the origin of cultivated rice [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome analysis promises hope for breast cancer patients [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome Alberta Welcomes Alberta Minister of Enterprise and Advanced Education, Stephen Khan and Federal Minister of ... [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fifty-hour whole genome sequencing provides rapid diagnosis for children with genetic disorders [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Will Low-Cost Genome Sequencing Open 'Pandora's Box'? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Genome testing could help individualize treatments [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Would you get your genome tested? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- The Genome — a Pandora's Box? [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Fast genome test could help sick newborns [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- In-Depth Genome Analysis Moves Toward The Hospital Bed [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Your Verdict On Getting A Genome Test? Bring It On [Last Updated On: October 6th, 2012] [Originally Added On: October 6th, 2012]
- Genome-wide study identifies 8 new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome-wide study identifies eight new susceptibility loci for atopic dermatitis [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genome interpreter vies for place in clinical market [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- The $1,000 Genome: A Bait and Switch? [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai School of Medicine Offers First-Ever Course with Whole Genome Sequencing [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- First whole genome sequencing of multiple pancreatic cancer patients has been outlined [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Cheap genome sequences demand new rules on privacy [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- UConn Gets Grant For Genome Research [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Inconsistent Genome Privacy Laws Need Toughening, Panel Says [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- US panel calls for stronger privacy for genome data [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Genome Canada Board Appoints New Chair [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- The $1,000 Genome Is Almost Here- Are We Ready? [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Global genome effort seeks genetic roots of disease [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Massive encyclopedia helps explain how the human genome works [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Genome evolution and carbon dioxide dynamics [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]