Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis | Scientific…

Posted: January 29, 2022 at 11:51 pm

Parte, A. C. LPSNlist of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42, D613-616 (2014).

CAS PubMed Google Scholar

Krzyciak, W., Pluskwa, K. K., Jurczak, A. & Kocielniak, D. The pathogenicity of the Streptococcus genus. Eur. J. Clin. Microbiol. Infect. Dis. 32, 13611376 (2013).

PubMed PubMed Central Google Scholar

Henriques-Normark, B. & Tuomanen, E. I. The pneumococcus: Epidemiology, microbiology, and pathogenesis. Cold Spring Harb. Perspect. Med. 3, a010215 (2013).

PubMed PubMed Central Google Scholar

Subramanian, K., Henriques-Normark, B. & Normark, S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol. 21, e13077 (2019).

CAS PubMed PubMed Central Google Scholar

Shabayek, S. & Spellerberg, B. Group B Streptococcal colonization, molecular characteristics, and epidemiology. Front. Microbiol. 9, 437 (2018).

PubMed PubMed Central Google Scholar

Raabe, V. N. & Shane, A. L. Group B Streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 7, 25 (2019).

Google Scholar

Srensen, U. B. S., Klaas, I. C., Boes, J. & Farre, M. The distribution of clones of Streptococcus agalactiae (group B streptococci) among herdspersons and dairy cows demonstrates lack of host specificity for some lineages. Vet. Microbiol. 235, 7179 (2019).

PubMed Google Scholar

Hernandez, L. et al. Multidrug resistance and molecular characterization of Streptococcus agalactiae isolates from dairy cattle with mastitis. Front. Cell Infect. Microbiol. 11, 647324 (2021).

CAS PubMed PubMed Central Google Scholar

Richards, V. P. et al. Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae. Mol. Biol. Evol. 36, 25722590 (2019).

CAS PubMed Central Google Scholar

Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin. Microbiol. Rev. 27, 264301 (2014).

PubMed PubMed Central Google Scholar

Barnett, T. C., Bowen, A. C. & Carapetis, J. R. The fall and rise of Group A Streptococcus diseases. Epidemiol. Infect. https://doi.org/10.1017/S0950268818002285 (2018).

Article PubMed PubMed Central Google Scholar

Vtsch, D., Willenborg, M., Weldearegay, Y. B. & Valentin-Weigand, P. Streptococcus suisthe Two Faces of a pathobiont in the porcine respiratory tract. Front. Microbiol. 9, 480 (2018).

PubMed PubMed Central Google Scholar

Huong, V. T. L. et al. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg. Infect. Dis. 20, 11051114 (2014).

PubMed PubMed Central Google Scholar

Rayanakorn, A., Goh, B.-H., Lee, L.-H., Khan, T. M. & Saokaew, S. Risk factors for Streptococcus suis infection: A systematic review and meta-analysis. Sci. Rep. 8, 13358 (2018).

ADS PubMed PubMed Central Google Scholar

Richards, V. P. et al. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol. Evol. 6, 741753 (2014).

PubMed PubMed Central Google Scholar

Shelyakin, P. V., Bochkareva, O. O., Karan, A. A. & Gelfand, M. S. Micro-evolution of three Streptococcus species: Selection, antigenic variation, and horizontal gene inflow. BMC Evol. Biol. 19, 83 (2019).

PubMed PubMed Central Google Scholar

Mostowy, R. J. et al. Pneumococcal capsule synthesis locus cps as evolutionary hotspot with potential to generate novel serotypes by recombination. Mol. Biol. Evol. 34, 25372554 (2017).

CAS PubMed PubMed Central Google Scholar

Chaguza, C. et al. Recombination in Streptococcus pneumoniae lineages increase with carriage duration and size of the polysaccharide capsule. MBio 7, 25 (2016).

Google Scholar

Da Cunha, V. et al. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nat. Commun. 5, 4544 (2014).

PubMed Google Scholar

Davies, M. R. et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat. Genet. 51, 10351043 (2019).

CAS PubMed PubMed Central Google Scholar

Springman, A. C. et al. Selection, recombination, and virulence gene diversity among group B streptococcal genotypes. J. Bacteriol. 191, 54195427 (2009).

CAS PubMed PubMed Central Google Scholar

Campisi, E. et al. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci. Rep. 6, 29799 (2016).

ADS CAS PubMed PubMed Central Google Scholar

Bao, Y.-J., Shapiro, B. J., Lee, S. W., Ploplis, V. A. & Castellino, F. J. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci. Rep. 6, 36644 (2016).

ADS CAS PubMed PubMed Central Google Scholar

Turner, C. E. et al. The emergence of successful Streptococcus pyogenes lineages through convergent pathways of capsule loss and recombination directing high toxin expression. MBio 10, e02521-e2619 (2019).

CAS PubMed PubMed Central Google Scholar

Weinert, L. A. et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat. Commun. 6, 6740 (2015).

ADS CAS PubMed Google Scholar

OLeary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733-745 (2016).

PubMed Google Scholar

Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589594 (2005).

CAS PubMed Google Scholar

Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).

PubMed PubMed Central Google Scholar

Gladstone, R. A. et al. Visualizing variation within Global Pneumococcal Sequence Clusters (GPSCs) and country population snapshots to contextualize pneumococcal isolates. Microb. Genom. 6, 25 (2020).

Google Scholar

Lin, M. & Kussell, E. Inferring bacterial recombination rates from large-scale sequencing datasets. Nat. Methods 16, 199204 (2019).

CAS PubMed Google Scholar

Milkman, R. & Bridges, M. M. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126, 505517 (1990).

CAS PubMed PubMed Central Google Scholar

Croucher, N. J., Harris, S. R., Barquist, L., Parkhill, J. & Bentley, S. D. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog. 8, e1002745 (2012).

CAS PubMed PubMed Central Google Scholar

Mostowy, R. et al. Efficient Inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 11671182 (2017).

CAS PubMed PubMed Central Google Scholar

Nolivos, S. & Sherratt, D. The bacterial chromosome: Architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. 38, 380392 (2014).

CAS PubMed Google Scholar

Nobbs, A. H., Lamont, R. J. & Jenkinson, H. F. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 73, 407450 (2009).

CAS PubMed PubMed Central Google Scholar

Ma, K. et al. cas9 enhances bacterial virulence by repressing the regR transcriptional regulator in Streptococcus agalactiae. Infect. Immun. 86, e00552-e617 (2018).

CAS PubMed PubMed Central Google Scholar

Zhner, D. & Scott, J. R. SipA is required for pilus formation in Streptococcus pyogenes serotype M3. J. Bacteriol. 190, 527535 (2008).

PubMed Google Scholar

Sampaio, M.-M. et al. Phosphotransferase-mediated transport of the osmolyte 2-O-alpha-mannosyl-D-glycerate in Escherichia coli occurs by the product of the mngA (hrsA) gene and is regulated by the mngR (farR) gene product acting as repressor. J. Biol. Chem. 279, 55375548 (2004).

CAS PubMed Google Scholar

Hava, D. L. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 13891406 (2002).

CAS PubMed PubMed Central Google Scholar

Ge, X. et al. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence. Infect. Immun. 76, 25512559 (2008).

CAS PubMed PubMed Central Google Scholar

Kaiser, J. C. & Heinrichs, D. E. Branching out: Alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. MBio 9, e01188-e1218 (2018).

CAS PubMed PubMed Central Google Scholar

Faghih, O. et al. Development of methionyl-tRNA synthetase inhibitors as antibiotics for gram-positive bacterial infections. Antimicrob. Agents Chemother. 61, e00999-e1017 (2017).

CAS PubMed PubMed Central Google Scholar

Hanada, K., Iwasaki, M., Ihashi, S. & Ikeda, H. UvrA and UvrB suppress illegitimate recombination: Synergistic action with RecQ helicase. Proc. Natl. Acad. Sci. USA 97, 59895994 (2000).

ADS CAS PubMed PubMed Central Google Scholar

Hanna, M. N., Ferguson, R. J., Li, Y. H. & Cvitkovitch, D. G. uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J. Bacteriol. 183, 59645973 (2001).

CAS PubMed PubMed Central Google Scholar

Baker, J. A., Simkovic, F., Taylor, H. M. C. & Rigden, D. J. Potential DNA binding and nuclease functions of ComEC domains characterized in silico. Proteins 84, 14311442 (2016).

CAS PubMed PubMed Central Google Scholar

Mostowy, R. et al. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet. 10, e1004300 (2014).

PubMed PubMed Central Google Scholar

Andam, C. P. et al. Genomic epidemiology of penicillin-nonsusceptible pneumococci with nonvaccine serotypes causing invasive disease in the United States. J. Clin. Microbiol. 55, 11041115 (2017).

CAS PubMed PubMed Central Google Scholar

Akhter, S., Aziz, R. K. & Edwards, R. A. PhiSpy: A novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 40, e126 (2012).

CAS PubMed PubMed Central Google Scholar

Le Bourgeois, P. et al. The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet. 3, e117 (2007).

PubMed PubMed Central Google Scholar

van der Lelie, D., Bron, S., Venema, G. & Oskam, L. Similarity of minus origins of replication and flanking open reading frames of plasmids pUB110, pTB913 and pMV158. Nucleic Acids Res. 17, 72837294 (1989).

PubMed PubMed Central Google Scholar

See the article here:
Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis | Scientific...

Related Posts