Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family – Nature.com

Posted: August 22, 2022 at 11:58 pm

Kieft, T. L. & Simmons, K. A. Allometry of animal-microbe interactions and global census of animal-associated microbes. Proc. R. Soc. B Biol. Sci. 282, 20150702 (2015).

Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 65786583 (1998).

ADS CAS PubMed PubMed Central Article Google Scholar

Bulgheresi, S. Bacterial cell biology outside the streetlight. Environ. Microbiol. 18, 23052318 (2016).

PubMed PubMed Central Article Google Scholar

Buskermolen, J. K. et al. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts. Tissue Eng. - Part C. Methods 22, 781791 (2016).

CAS PubMed PubMed Central Article Google Scholar

Kosten, I. J., Buskermolen, J. K., Spiekstra, S. W., De Gruijl, T. D. & Gibbs, S. Gingiva equivalents secrete negligible amounts of key chemokines involved in langerhans cell migration compared to skin equivalents. J. Immunol. Res. 2015, 627125 (2015).

Hampton, J. C. & Rosario, B. The attachment of microorganisms to epithelial cells in the distal ileum of the mouse. Lab. Investig. 14, 14641481 (1965).

CAS PubMed Google Scholar

Jonsson, H., Hugerth, L. W., Sundh, J., Lundin, E. & Andersson, A. F. Genome sequence of segmented filamentous bacteria present in the human intestine. Commun. Biol. 3, 19 (2020).

Article CAS Google Scholar

Schnupf, P. et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 520, 99103 (2015).

ADS CAS PubMed PubMed Central Article Google Scholar

Hedlund, B. P. & Kuhn, D. A. The Genera Simonsiella and Alysiella. Prokaryotes 5, 828839 (2006).

Article Google Scholar

Hedlund, B. P. & Tnjum, T. Simonsiella. Bergeys Man. Syst. Archaea Bact. 112. https://doi.org/10.1002/9781118960608.GBM00983 (2015).

Kuhn, D. A., Gregory, D. A., Buchanan, G. E., Nyby, M. D. & Daly, K. R. Isolation, characterization, and numerical taxonomy of Simonsiella strains from the oral cavities of cats, dogs, sheep, and humans. Arch. Microbiol. 118, 235241 (1978).

CAS PubMed Article Google Scholar

Xie, C. H. & Yokota, A. Phylogenetic analysis of Alysiella and related genera of Neisseriaceae: proposal of Alysiella crassa comb. nov., Conchiformibium steedae gen. nov., comb. nov., Conchiformibium kuhniae sp. nov. and Bergeriella denitrificans gen. nov., comb. nov. J. Gen. Appl. Microbiol. 51, 110 (2005).

CAS PubMed Article Google Scholar

Ericsson, A. C., Hagan, C. E., Davis, D. J. & Franklin, C. L. Segmented filamentous bacteria: commensal microbes with potential effects on research. Comp. Med. 64, 9098 (2014).

CAS PubMed PubMed Central Google Scholar

Schnupf, P., Gaboriau-Routhiau, V., Sansonetti, P. J. & Cerf-Bensussan, N. Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Curr. Opin. Microbiol. 35, 100109 (2017).

CAS PubMed Article Google Scholar

Nyongesa, S., Chenal, M., Bernet, ., Coudray, F. & Veyrier, F. J. Sequential markerless genetic manipulations of species from the Neisseria genus. Can. J. Microbiol. https://doi.org/10.1139/cjm-2022-0024 (2022).

Veyrier, F. J. et al. Common cell shape evolution of two nasopharyngeal pathogens. PLoS Genet. 11, 123 (2015).

Article CAS Google Scholar

Pangborn, J., Kuhn, D. A. & Woods, J. R. Dorsal-ventral differentiation in Simonsiella and other aspects of its morphology and ultrastructure. Arch. Microbiol. 113, 197204 (1977).

CAS PubMed Article Google Scholar

Kaiser, G. E. & Starzyk, M. J. Ultrastructure and cell division of an oral bacterium resembling Alysiella filiformis. Can. J. Microbiol. 19, 325327 (1973).

CAS PubMed Article Google Scholar

Murray, R. G., Steed, P. & Elson, H. E. The location of the mucopeptide in sections of the cell wall of Escherichia Coli and other gram-negative bacteria. Can. J. Microbiol. 11, 547560 (1965).

CAS PubMed Article Google Scholar

Leisch, N. et al. Growth in width and FtsZ ring longitudinal positioning in a gammaproteobacterial symbiont. Curr. Biol. 22, R831R832 (2012).

CAS PubMed Article Google Scholar

Leisch, N. et al. Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra. Nat. Microbiol. 2, 16182 (2016).

CAS PubMed Article Google Scholar

Ramond, E., Maclachlan, C., Clerc-Rosset, S., Knott, G. W. & Lemaitre, B. Cell division by longitudinal scission in the insect endosymbiont Spiroplasma poulsonii. MBio 7, 15 (2016).

Article Google Scholar

Dudek, N. K. et al. Previously uncharacterized rectangular bacteria in the dolphin mouth. bioRxiv https://doi.org/10.1101/2021.10.23.465578 (2021).

Szwedziak, P. & Lwe, J. Do the divisome and elongasome share a common evolutionary past? Curr. Opin. Microbiol. 16, 745751 (2013).

CAS PubMed Article Google Scholar

Bi, E. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161164 (1991).

ADS CAS PubMed Article Google Scholar

Hltje, J.-V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181203 (1998).

PubMed PubMed Central Article Google Scholar

Shi, H. et al. Deep phenotypic mapping of bacterial cytoskeletal mutants reveals physiological robustness to cell size. Curr. Biol. 27, 34193429.e4 (2017).

CAS PubMed Article Google Scholar

Shi, H., Bratton, B. P., Gitai, Z. & Huang, K. C. How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell 172, 12941305 (2018).

CAS PubMed PubMed Central Article Google Scholar

Addinall, S. G. & Lutkenhaus, J. FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol. Microbiol. 22, 231237 (1996).

CAS PubMed Article Google Scholar

Monahan, L. G., Robinson, A. & Harry, E. J. Lateral FtsZ association and the assembly of the cytokinetic Z ring in bacteria. Mol. Microbiol. 74, 10041017 (2009).

CAS PubMed Article Google Scholar

Sen, B. C. et al. Specific amino acid substitutions in strand S2 of FtsZ cause spiraling septation and impair assembly cooperativity in Streptomyces spp. Mol. Microbiol. 112, 184198 (2019).

CAS PubMed Article Google Scholar

Xiao, X. et al. Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in Streptomyces. Open Biol. 11, 200409 (2021).

den Blaauwen, T. Is longitudinal division in rod-shaped bacteria a matter of swapping axis? Front. Microbiol. 9, 822 (2018).

Thanbichler, M. Cell division: symbiotic bacteria turn it upside down. Curr. Biol. 28, R306R308 (2018).

CAS PubMed Article Google Scholar

Chen, S., Rudra, B. & Gupta, R. S. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst. Appl. Microbiol. 44, 126251 (2021).

CAS PubMed Article Google Scholar

Ishikawa, S. A., Zhukova, A., Iwasaki, W., Gascuel, O. & Pupko, T. A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 36, 20692085 (2019).

CAS PubMed PubMed Central Article Google Scholar

Adeolu, M. & Gupta, R. S. Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov. Antonie van. Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 104, 124 (2013).

Google Scholar

Pende, N. et al. Host-polarized cell growth in animal symbionts. Curr. Biol. 28, 10391051.e5 (2018).

CAS PubMed PubMed Central Article Google Scholar

Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science. 355, 739 LP739743 (2017).

ADS Article CAS Google Scholar

Yang, X. et al. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355, 744747 (2017).

ADS CAS PubMed PubMed Central Article Google Scholar

Guerra Maldonado, J. F., Vincent, A. T., Chenal, M. & Veyrier, F. J. CAPRIB: a user-friendly tool to study amino acid changes and selection for the exploration of intra-genus evolution. BMC Genomics 21, 114 (2020).

Article CAS Google Scholar

Veyrier, F., Pletzer, D., Turenne, C. & Behr, M. A. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol. Biol. 9, 114 (2009).

Article CAS Google Scholar

Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2018 173 17, 156166 (2018).

Google Scholar

Poole, K., Schiebel, E. & Braun, V. Molecular characterization of the hemolysin determinant of Serratia marcescens. J. Bacteriol. 170, 31773188 (1988).

CAS PubMed PubMed Central Article Google Scholar

Eraso, J. M. et al. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. J. Bacteriol. 196, 20532066 (2014).

PubMed PubMed Central Article CAS Google Scholar

Fisunov, G. Y. et al. Binding site of MraZ transcription factor in Mollicutes. Biochimie 125, 5965 (2016).

CAS PubMed Article Google Scholar

Mengin-Lecreulx, D. et al. Contribution of the P(mra) promoter to expression of genes in the Escherichia coli mra cluster of cell envelope biosynthesis and cell division genes. J. Bacteriol. 180, 44064412 (1998).

CAS PubMed PubMed Central Article Google Scholar

Khan, M. A., DuricaMitic, S., Gpel, Y., Heermann, R. & Grke, B. Small RNAbinding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli. EMBO J. 39, e103848 (2020).

Beauchamp, B. B. & Richardson, C. C. A unique deoxyguanosine triphosphatase is responsible for the optA1 phenotype of Escherichia coli. Proc. Natl Acad. Sci. USA 85, 25632567 (1988).

ADS CAS PubMed PubMed Central Article Google Scholar

Sukdeo, N. & Honek, J. F. Microbial glyoxalase enzymes: metalloenzymes controlling cellular levels of methylglyoxal. Drug Metabol. Drug Interact. 23, 2950 (2008).

CAS PubMed Article Google Scholar

Busiek, K. K. & Margolin, W. Bacterial actin and tubulin homologs in cell growth and division. Curr. Biol. 25, R243R254 (2015).

CAS PubMed PubMed Central Article Google Scholar

Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. 7th Python in Science Conference (SciPy 2008) (2008).

Siefert, J. L. & Fox, G. E. Phylogenetic mapping of bacterial morphology. Microbiology 144, 28032808 (1998).

CAS Article Google Scholar

Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660703 (2006).

PubMed PubMed Central Article Google Scholar

Mark Welch, J. L., Ramrez-Puebla, S. T. & Borisy, G. G. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe 28, 160168 (2020).

Read the original post:
Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family - Nature.com

Related Posts