Concerted expansion and contraction of immune receptor gene repertoires in plant genomes – Nature.com

Posted: October 15, 2022 at 5:22 pm

Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323329 (2006).

CAS PubMed Google Scholar

Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34, 14471478 (2022).

PubMed PubMed Central Google Scholar

Ngou, B. P. M., Ahn, H.-K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110115 (2021).

CAS PubMed Google Scholar

Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105109 (2021).

CAS PubMed PubMed Central Google Scholar

Pruitt, R. N. et al. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495499 (2021).

CAS PubMed Google Scholar

Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500503 (2021).

CAS PubMed Google Scholar

Boutrot, F. & Zipfel, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55, 257286 (2017).

CAS PubMed Google Scholar

Shiu, S. H. & Bleecker, A. B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530543 (2003).

CAS PubMed Google Scholar

Dievart, A., Gottin, C., Prin, C., Ranwez, V. & Chantret, N. Origin and diversity of plant receptor-like kinases. Annu. Rev. Plant Biol. 71, 131156 (2020).

CAS PubMed Google Scholar

Lehti-Shiu, M. D., Zou, C., Hanada, K. & Shiu, S.-H. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 150, 1226 (2009).

CAS PubMed PubMed Central Google Scholar

Ma, X., Xu, G., He, P. & Shan, L. SERKing coreceptors for receptors. Trends Plant Sci. 21, 10171033 (2016).

CAS PubMed Google Scholar

Jose, J., Ghantasala, S. & Roy Choudhury, S. Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int. J. Mol. Sci. 21, 4000 (2020).

CAS PubMed Central Google Scholar

Furumizu, C. et al. The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. Plant Cell 33, 29152934 (2021).

PubMed PubMed Central Google Scholar

Jones, J. D. G., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395 (2016).

PubMed Google Scholar

Shao, Z.-Q. et al. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol. 166, 217234 (2014).

PubMed PubMed Central Google Scholar

Baggs, E. L. et al. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response. Plant Cell 32, 21582177 (2020).

CAS PubMed PubMed Central Google Scholar

Dufayard, J.-F. et al. New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front. Plant Sci. 8, 381 (2017).

PubMed PubMed Central Google Scholar

Li, P. et al. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 17, 852 (2016).

CAS PubMed PubMed Central Google Scholar

Laohavisit, A. et al. Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature 587, 9297 (2020).

CAS PubMed Google Scholar

Wu, F. et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578, 577581 (2020).

CAS PubMed Google Scholar

Tseng, Y.-H. et al. CORK1, A LRR-malectin receptor kinase, is required for cellooligomer-induced responses in Arabidopsis thaliana. Cells 11, 2960 (2022).

Google Scholar

Liu, Y., Huang, X., Li, M., He, P. & Zhang, Y. Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. N. Phytol. 212, 637645 (2016).

CAS Google Scholar

Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233239 (2016).

Google Scholar

Liu, Y. et al. An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion. Mol. Plant 14, 20152031 (2021).

CAS PubMed Google Scholar

VanBuren, R. et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527, 508511 (2015).

CAS PubMed Google Scholar

Andolfo, G. et al. Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. N. Phytol. 197, 223237 (2013).

CAS Google Scholar

Tirnaz, S. et al. Resistance gene analogs in the Brassicaceae: identification, characterization, distribution, and evolution. Plant Physiol. 184, 909922 (2020).

CAS PubMed PubMed Central Google Scholar

Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440452 (2018).

CAS PubMed PubMed Central Google Scholar

Stukenbrock, E. H. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 106, 104112 (2016).

CAS PubMed Google Scholar

Li, F. et al. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat. Commun. 10, 5068 (2019).

PubMed PubMed Central Google Scholar

Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 35663573 (1990).

CAS PubMed PubMed Central Google Scholar

Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

CAS PubMed PubMed Central Google Scholar

Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 5960 (2015).

CAS PubMed Google Scholar

Deorowicz, S., Debudaj-Grabysz, A. & Gudy, A. FAMSA: fast and accurate multiple sequence alignment of huge protein families. Sci. Rep. 6, 33964 (2016).

CAS PubMed PubMed Central Google Scholar

Tan, G. et al. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 64, 778791 (2015).

CAS PubMed PubMed Central Google Scholar

Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

PubMed PubMed Central Google Scholar

Lemoine, F. & Gascuel, O. Gotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genom. Bioinform. 3, lqab075 (2021).

PubMed PubMed Central Google Scholar

Steidele, C. E. & Stam, R. Multi-omics approach highlights differences between RLP classes in Arabidopsis thaliana. BMC Genomics 22, 557 (2021).

CAS PubMed PubMed Central Google Scholar

Fritz-Laylin, L. K., Krishnamurthy, N., Tr, M., Sjlander, K. V. & Jones, J. D. G. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol. 138, 611623 (2005).

CAS PubMed PubMed Central Google Scholar

Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567580 (2001).

CAS PubMed Google Scholar

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293W296 (2021).

CAS PubMed PubMed Central Google Scholar

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289300 (1995).

Google Scholar

Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W. & Jones, J. D. Genome-wide identification of cell-surface and intracellular immune receptors in 350 plant species. Zenodo https://doi.org/10.5281/zenodo.7017981 (2022).

Follow this link:
Concerted expansion and contraction of immune receptor gene repertoires in plant genomes - Nature.com

Related Posts