AI is ready to take on a massive healthcare challenge – TechCrunch

Posted: May 9, 2021 at 11:15 am

Einat Metzer is CEO and co-founder of Emedgene, a leading precision medicine intelligence company.

Which disease results in the highest total economic burden per annum? If you guessed diabetes, cancer, heart disease or even obesity, you guessed wrong. Reaching a mammoth financial burden of $966 billion in 2019, the cost of rare diseases far outpaced diabetes ($327 billion), cancer ($174 billion), heart disease ($214 billion) and other chronic diseases.

Its not surprising that rare diseases didnt come to mind. By definition, a rare disease affects fewer than 200,000 people. However, collectively, there are thousands of rare diseases and those affect around 400 million people worldwide. About half of rare disease patients are children, and the typical patient, young or old, weather a diagnostic odyssey lasting five years or more during which they undergo countless tests and see numerous specialists before ultimately receiving a diagnosis.

Shortening that diagnostic odyssey and reducing the associated costs was, until recently, a moonshot challenge, but is now within reach. About 80% of rare diseases are genetic, and technology and AI advances are combining to make genetic testing widely accessible.

Whole-genome sequencing, an advanced genetic test that allows us to examine the entire human DNA, now costs under $1,000, and market leader Illumina is targeting a $100 genome in the near future.

The remaining challenge is interpreting that data in the context of human health, which is not a trivial challenge. The typical human contains 5 million unique genetic variants and of those we need to identify a single disease-causing variant. Recent advances in cognitive AI allow us to interrogate a persons whole genome sequence and identify disease-causing mechanisms automatically, augmenting human capacity.

The path to a broadly usable AI solution required a paradigm shift from narrow to broader machine learning models. Scientists interpreting genomic data review thousands of data points, collected from different sources, in different formats.

An analysis of a human genome can take as long as eight hours, and there are only a few thousand qualified scientists worldwide. When we reach the $100 genome, analysts are expecting 50 million-60 million people will have their DNA sequenced every year. How will we analyze the data generated in the context of their health? Thats where cognitive intelligence comes in.

Here is the original post:
AI is ready to take on a massive healthcare challenge - TechCrunch

Related Posts