At around 7 p.m. on Dec. 19, 2020, three young adults and their teacher gathered for dinner at the restaurant of the swank 1880 club in Singapore. They ordered chicken and waffles and, on the side, chicken baos. History Made, proclaimed the menus, because those diners had eaten the worldsfirst portions of chicken meat manufactured from cells, rather than slain birds.
The location was unlikely, but no accident. After a California-based start-up, Eat Just, succeeded in cultivating chicken meat from cells, it chose Esco Aster, a Singapore-based synthetic biology (syn-bio) contract manufacturing company, to manufacture cultivated chicken nuggets andbreasts as well as shredded chicken. Then the Singapore Food Authority (SFA) gave Eat Justpermissiontoproduce small batches of cultured cells in Esco Asters food-safe bioreactors, and to sell the products locally once they had met its stringent food safety criteria. Thus, the SFAbecame theworlds first regulatory authorityto approve the sale of cultured chicken meat.
Unlikeother nations, Singapore is wooing syn-bio start-ups across the world to make the city their home base.In addition to cell-basedmeats, the government is catalyzing the manufacture of proteins from plants, algae, and fungi. Ithas set up aFuture Ready Food Safety Hubto help companies navigate its approvals process, and to speed up the launch of bio-engineered products.
Over two dozen syn-bio food companiessuch as Shiok Meats, which recently launchedthe worlds first lab-grown crab and shrimp meatshave set up shop in Singapore. Thus, the city-state, which has hardly any farmland or livestock, plans to scale new technologies tomeet its goal of producing30% of its food locally by 2030, and boost economic growth by turning intoone of the worlds firstand biggestcultivated meat exporters.
Singapore may be showing the way, but most countries, unaware of the potential of syn-bio, havent put the emergent industry at the top of their policy agendas. As a result, the syn-bio industrys growth may be getting stymied. For instance, several forecasts in 2020 suggested that cultivated meat was likely to grow into a$150 billion segmentby the end of this decade, and account for around 10% of the global meat market. Two years later, that seems unlikely, not because the technologys development has slowed but because governments have been slow to legislate, regulate, and foster the industry.
Its shocking because syn-bio products have several advantages over conventional ones. Theyre sustainable, using little, or no, water, land, or carbon-emitting materialsand much less that most traditional livestock. They promise to make humanhealth better, with new syn-bio therapies likely to vanquish many diseases. And novel products, such as soil-nourishing bacteria, will help boost agriculturalproduction manifold. In fact, the technology offers governments the ability todecouple economiesfrom global supply chains, andreduce their dependence on raw material imports.
Syn-bio is clearly the next growthfrontier, sodeveloping suitable policies will be critical to unlock its benefits. According to aBCG study,syn-bio technologiescould reshape industries that will account for nearly a third of global GDP by 2030 if governments develop the appropriate regulations and rules. Moreover, as Singapore has shown, creating the conditions in which syn-bio start-ups will flourish isnt solely the prerogative of large, industrialized countries.
Although eachnations starting point will differ, every government must tackle challenges on three fronts to benefit from syn-bio.
Governments must, first and foremost, invest in advancing nations and companies knowledge of synthetic biology, much of which is still uncharted territory. As theU.S. recently did, countries can orchestrate syn-bio research by announcing formal policies, creating budgets, and setting up national agencies to spearhead the process.
Policymakers should focus on gathering and synthesizing scientific and technical knowledge by funding basic research programs; creating R&D facilities; and catalyzing the creation of graduate and post-graduate education programs in universities and colleges. One key objective should be to create talent for applied areassuch as bioreactor builders and fermentation specialistsso that they develop efficient microorganisms that use second-generation feedstock, such as organic waste, rather than processed sugars. Another priority should be to create computing resources, in terms of people and processing power, because the amount of biological data available is fast outpacing countries processing capabilities.
Apart from creating national repositories of scientific knowledge that any individual or institution can access, governments must push for the development of open standards and protocols to facilitate knowledge dissemination. They must create trusted data-sharing platforms and partner with institutions such asiGEMandBioBricks, which have developed the Get & Give philosophy and established standards for syn-bio parts to ensure their interoperability. For instance, Googles DeepMind and its A.I.,Alpha Fold, in tandem with a European intergovernmental organization, recently made public the structures of nearly all the proteins known to science.
Nations that are starting out on syn-bio quests must harness international forums and open platforms to move up the learning curve. Syn-bio research is becoming global; in 2022, iGEMs well-known syn-bio competition saw46 countries participating, 50% of which were developing countriestwice as many as a decade ago.
Second, policymakers must support business scaling of syn-bio applications,stipulating design-to-cost milestones to ensure that the efforts develop applications that will make an impact. A recentBCG study, for instance, projected when different industries are likely to be affected by syn-bio technologies. Governments must monitor the maturity of these emerging technologies by tracking cost and scale tipping points, and develop funding roadmaps that will help grow them to commercial scale.
Co-ordination can maintain the design-to-cost focus from the get-go, and help overcome the hurdles in the way of the commercialization of syn-bio technologies. Dont forget, only a few microbes such asE. coliand common yeast have been produced at scale. Others, such as mammalian cells, havent reached that stageyet.
Because syn-bio technologies dont scale linearly, engineering and development will be crucial to make it possible. Governments must use multilateral forums to forge connections between local and global stakeholders, and use technical collaborations to reduce knowledge gaps.
Countries trying to catch up should nurture the capabilities to develop applications that have commercial precedents, such as bio-catalysts and bio-chemicals. They best ways of doing that are to both orchestrate cross-border joint ventures and technology transfers, and intensify research efforts at home. Governments would be wise to attract global investments in late-stage startups, so the latter can scale and wont need to be acquired by multinational giants.
In most countries, incubators and accelerators that have seed funds and innovative financing models will help translate research into commercial ventures, and plant the financial foundations of healthy syn-bio ecosystems. For instance, in 2014,Singapore piloted intellectual property valuations, which raised awareness about IPs use as collateral and helped create an effective syn-bio ecosystem in the city.
Finally, governments must balance the need to create a friendly regulatory environment for syn-bio ventures with the need to win a social license.People have deep suspicions about syn-bio applications, just as they have about organismswhose genetic makeup has been modified in a laboratory using genetic engineering or transgenic technology (GMOs).Policy-makersmust keep educating society about syn-bio technologys potential and risks, and gauge perceptions and acceptance of its applications, so they can make course corrections.
Stakeholders must be involved at every stage of the value chain, from lab to market, to ensure that consumers buy syn-bio products. Its smart to proactively discuss the intent of the new technology. For instance, DARPA quietly launchedInsect Allies, a $45 million project to test the ability of engineered virus-carrying insects to protect crops from pestilence, in 2016. After manyU.S. scientists criticizedthe projects intent, DARPA was forced todefend itselfby highlighting its benefits and describing the safeguards it had deployed.
Syn-bio ventures must ensure the equitable use of shared resources, such as water, if they are to retain the social license from stakeholders such as farmers and indigenous populations. When Amyris set up afermentation facility in Brazilrecently, for example, it sourced feedstock from local sugarcane farms that didnt contribute to deforestation; required minimal irrigation; and didnt suck up drinking water. Local regulators must ensure syn-bio firms adhere to rules and laws even as they engage with local communities to identify all their concerns.
Finally, governments must keep in mind that the same syn-bio products can be created in different ways, and so, the regulatory regimes will need to vary. For instance, startups such as Impossible Foods, Mosa Meat, and Meati all compete in the cultured meats market, but, because they use microbes, cells, and fungi, respectively, to develop products, they must be subject to different legal frameworks. That could create entry barriers if policy-makers dont streamline the regulatory landscape.
Just as the 1990s belonged to the Internet, the 2020s mark syn-bios coming of age. As the worlds knowledge and use of syn-bio technologies grow, governments have no choice but to develop policies that will allow the industry to flourish. Because the technology creates novel and sustainable offerings, policy-makers must come to grips with syn-bio if they wish to boost economic growth even as they safeguard the environment. Only policy-makers that seize this dual opportunity by enacting supportive policies will be able to build their nations competitive advantage for the Bio Age.
ReadotherFortunecolumns by Franois Candelon.
Franois Candelonisa managing director and senior partner at BCG and global director of the BCG Henderson Institute.
Maxime Courtauxis a project leader at BCG and ambassador at the BCG Henderson Institute.
Vinit Patelis a project leader at BCG and ambassador at the BCG Henderson Institute.
Some companies featured in this column are past or current clients of BCG.
- Main Show Only - Genetic Engineering - Coast to Coast AM - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- RTPB | Genetic Engineering [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Stop Monsanto From Poisoning Hawai'i: Genetic Engineering Chemical Warfare - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Informatics 161 PSA: Human Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Don't Trust Whole Foods or Other Health Food Stores For Non- GMO Foods | Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Easier Genetic Engineering! (Brainstorm Ep69) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- TEDxUCIrvine - Francisco Ayala - Cloning, Genetic Engineering, [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genetic Engineering in Agriculture - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Infowars Special Report : Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Glowing Rats and Extreme Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Endangered Cat Born at Audubon - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Danger of Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- AQA GCSE core science and B1 - Genetic Engineering - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- genetic engineering rDNA.wmv - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genetic Engineering for Human Enhancement.mp4 - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Genetic Engineering - Seven Wonders of the Microbe World (6/7) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Promising new drug target for inflammatory lung diseases [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- Mandatory GM Labeling Would Require Major Change [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- GEN reports on ocular therapeutics targeting the retina [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Prop. 37: Another example of the perils of the initiative process [Last Updated On: September 15th, 2012] [Originally Added On: September 15th, 2012]
- Genetic test predicts risk for Autism [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Immediate withdrawal of unsafe GE corn vital - Greens [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Immediate withdrawal of unsafe GE corn vital [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- NZ out of step on GE [Last Updated On: September 21st, 2012] [Originally Added On: September 21st, 2012]
- Ballot Watch: Labeling genetically engineered foods [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Just another GE mirage [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- The GM Barnyard [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Free Engine [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Cellectis Publishes Results Paving the Way for New Therapeutic Approaches against Cancer and Genetic Diseases [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Does moral decision-making in video games mirror the real world? [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Animals engineered with pinpoint accuracy [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Valley farmers fear 'modified' wording in Prop. 37 [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- No on Proposition 37 [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- The Dangers of Genetic Engineering [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Are inhaled medications effective and safe in critically ill patients on mechanical ventilation? [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Calif. initiative will test appetite for GMO food [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Calif. initiative will test appetite for GMO food - Sat, 06 Oct 2012 PST [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- California to vote on 'genetically modified' labels [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- California initiative will test appetite for genetically modified foods [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Do we have an appetite for genetically modified food? [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- Genetic labelling mooted in California [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- California initiative to test appetite for 'genetically engineered' food [Last Updated On: October 7th, 2012] [Originally Added On: October 7th, 2012]
- New tool for making genetic engineering of microbial circuits reliably predictable [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Researchers develop new tool for making genetic engineering of microbial circuits reliably predictable [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- A Welcome Predictability [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Engineered flies spill secret of seizures [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- Genetic 'remix' key to evolution of bee behavior, researchers find [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Can vaccines be delivered via the lungs instead of by injection? [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Food labeling regulations [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Research and Markets: Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area ... [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- Is there a difference between GE & GMO? [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- Port Townsend Food Coop: A Sad Story of GMO Crop Cross Pollination - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- PUT IT IN YOUR MOUTH! Yes to Prop 37 — it's your right to know what's in your food! - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- editta braun company: planet LUVOS (clip, 4:30) - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- Mimic: The Director's Cut (Blu-ray Trailer) - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- South Park Season 1 Episode 7 - An Elephant Makes Love to a Pig - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- Yes on Prop 37: Animated Video - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- The Day of the Triffids Part 1 Full Movie - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- YES on prop 37 "flashmob" march - Santa Cruz, CA Sept. 2012 - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- World's Weirdest Places Discussed - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- THE CLUB OF ROME - DEPOPULATION AGENDA 21 - THE UNHIVED MIND - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- 27-Medical BiotechnologySG Part II.Gene Therapy, Tissue Engineering and Nanotechnology.mov - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- 26-Medical BiotechnologySG Part Ic. Animal and Human Cloning and Genetic Engineering.mov - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- How to Clone Animals - Video [Last Updated On: November 2nd, 2012] [Originally Added On: November 2nd, 2012]
- Fringe Opening sequence (Season 3 - The Day We Died) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (Season 3 - Olivia) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (Season 3 - Entrada) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (Season 4) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (Season 3) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (Season 2) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (1985) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Dendritic Cells: Biology And Clinical Applications - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Port Townsend Food Coop: "I want my food untainted by GMOs" - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Catholic Priest vs. Biologist - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Watch Real Life Superhero Muscles Like Marvel's The Avengers - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (Season 1) - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Fringe Opening sequence (The Final Season: "Fight For The Future") - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- Port Townsend Food Coop: I Want To Know If GMOs Are In My Food - Video [Last Updated On: November 4th, 2012] [Originally Added On: November 4th, 2012]
- ProCognia jumps on expanded biosimilar collaboration [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]