In September 2021, following the publication of results from the phase 3 VISION trial of lutetium (Lu)-177 PSMA-617 (LuPSMA) in select patients with metastatic castration-resistant prostate cancer (mCRPC),1 the United States Food and Drug Administration (FDA) granted priority review to LuPSMA.2
The FDAs decision comes on the heels of the trials positive results, which are explored in How the VISION trial may change prostate cancer therapy, the fourth article in this Targeted Oncology series, entitled New Precision Medicine Approaches in Advanced Prostate Cancer. However, it also comes after recent advances in genetic testing, biomarkers, nuclear imaging, and combination treatments for prostate cancer. These are discussed, respectively, in The role of imaging and genomic testing in prostate cancer therapy, New horizons in nuclear medicine for prostate cancer, and Expert perspective on the changing treatment spectrum for advanced prostate cancer, also in this series.
As the FDA reviews LuPSMA, experts have questions about this novel radiopharmaceutical and how it might be adopted in the US.
Ahead, Oliver Sartor, MD, medical director at Tulane Cancer Center in New Orleans, Louisiana, co-principal investigator of the VISION trial, and lead author of the published results, considers some of the questions about this novel radiopharmaceutical and how it might be adopted in the US. Dr. Sartor also discusses how the VISION trial fits into new prostate-specific membrane antigen (PSMA) research and explores the future of phenotypic theranostics in precision medicine.
TARGETED ONCOLOGY: What are the key takeaways from the VISION trial?
SARTOR: I think there are a couple. No. 1 is [that] we really wanted to design a trial that would result in regulatory approval in multiple countries, so that was the goal starting out. Of course, we wanted to use the PSMA Lu-177 using the PSMA-617 targeting molecule. That was kind of where we started.
I also felt that having prolongation of survival as an end point was key. To meet it, we chose very difficult-to-treat patients. The patients who enrolled in VISION had already gone through chemotherapy and at least 1 taxane. Many of the patientsabout 40%had actually had 2 lines of a taxane chemotherapy prior to enrolling in the trial. Everyone was also required to have use[d] at least 1 novel hormone, but multiple novel hormones were allowed. Abiraterone and enzalutamide, for instance, would have previously been used. A substantial proportion of them had undergone not just 1 but 2 chemotherapies, and all of them had undergone multiple hormonal treatments. These patients were extremely difficult to treat.
We also used the PSMA PET scan to choose and exclude patients. We wanted to choose patients who have PSMA PET metastases greater than just in the liver. This wasn't a stringent criterion, but we wanted to make sure that everybody had PSMA positivity. We also excluded patients who had PSMA negativity, lymph nodes greater than 2.5 cm, or visceral lesions of more than 1 cm.[There] were [also] a variety of other inclusion criteria like adequate performance status, adequate bone marrow, etc.
Included patients were randomized to receive a nonchemotherapeutic standard of care [treatment]. This included additional hormones, radiation therapy, bisphosphonates, maybe steroids plus or minus the PSMA lutetium, etc. There was a 2-to-1 randomization. Overall survival (OS) was an end point. Also, after the trial was already designed, there was a radiographic progression-free survival (rPFS) end point added. Patients were intended to be treated with at least 4 cycles for the PSMA lutetium and could receive up to 6 if there was evidence of clinical benefit. That's the basic framework of the trial.
The bottom line is we hit OS, and we hit rPFS. I think the safety profile was good. We also had health-related quality-of-life improvement for the PSMA lutetium. I believe this trial will result in multiple regulatory approvals, which was the goal that we set out to accomplish.
TARGETED ONCOLOGY: Based on findings from the VISION trial, what might we expect from ongoing clinical trials investigating Lu-PSMA-617 earlier in the natural history of prostate cancer?
SARTOR: Patients in the VISION trial had all failed a novel hormone and a taxane-based chemotherapy, so the VISION trial [included]advanced patient[s] with chemotherapy exposure. However, many patients with prostate cancer never receive chemotherapy, so were now starting a trial for patients with [m]CRPC called PSMAfore (NCT04689828), [which] doesn't require patients prior use of chemotherapy. Here, we're taking patients without chemotherapy exposure, but we're requiring that they have at least abiraterone or enzalutamide as a prior treatment. PSMAfore is moving forward with an rPFS end point with a crossover for those who are on the control arm, [so] they would have the opportunity to also receive PSMA lutetium. That trial is already accruing: I've already personally enrolled patients into the trial.
PSMAfore examines the castration-resistant space. We're also moving into the castration-sensitive space. In a phase 3 trial, we're going to be examining metastatic castrate-sensitive prostate cancer. Everybody receives androgen-deprivation therapy (ADT) and a novel hormone. The novel hormone can be [the] doctor's choice: abiraterone, enzalutamide, or apalutamide, all of which are FDA approved. This trial [is] plus or minus the PSMA lutetium. Here again, we're using an rPFS end point. This is going to be a big global trial. It, too, is already accruing patients. We've already consented our first patient here in the United States, and it's accruing in multiple countries around the globe.
We're hopeful that these earlier stage trials with PSMA-617 lutetium are going to result in more regulatory approvals for less heavily pretreated patients than were present in VISION.
There's also another phase 3 trial called the SPLASH trial (NCT04647526) using a PSMA-targeted radiopharmaceutical. Again, [it is] Lu-177, but this time instead of PSMA-617, it is 177 Lu-PSMA-I&T.
The[re] are additional phase 3 trials in the mCRPC nonchemotherapy-pretreated space. These trials are not quite underway to the same degree that PSMAfore is. Nevertheless, I think they can add value as we move forward.
TARGETED ONCOLOGY: If approved, how might Lu-PSMA fit within the current treatment landscape for mCRPC? What challenges do you anticipate for the use or acceptance of this agent?
SARTOR: I think the first label will be in accordance with the VISION-selected patients: mCRPC by conventional imaging and prior treatment with both a novel hormone such as abiraterone or enzalutamide and at least 1 taxane. Everybody would need to be PSMA-positive on the PET scan in accordance with the criteria that we established in VISION, I anticipate. That might not be the case, but I suspect it will.
After approval, the barriers are going to be severalfold. No. 1, there are going to be a lot of patients who do not want chemotherapy and are not treated with chemotherapy. They're going to be frustrated that they can't get this agent because the FDA and other regulatory bodies, I think, are going to require the chemotherapy pre-treatment. That's going to be 1 issue, [and] that's going to be addressed with PSMAfore and others.
No. 2, there are already access issues in the United States for PSMA PET. Not all of the insurance companies have approved it. If a PSMA PET [scan] is required, then somehow all these PSMA PET scans are going to have to be performed. That's a potential holdup.
No. 3, I think that the specialties that are qualified to administer the radiopharmaceuticalseither nuclear medicine or radiation oncologymay be overwhelmed with the demand. I'm worried that not enough centers are going to be ready. Ideally, these patients should be under multidisciplinary care. These are individuals who have multiple potential complications. It's not just pushing an isotope and seeing the patient back in 6 weeks. Multidisciplinary care is optimal. However, getting these patients through multi-d[isciplinary] clinics [to be sent] to those who are qualified to administer the therapy and then ensuring that theyve had chemotherapy and getting them [PSMA] PET scans could all be a hindrance.
There are stumbling blocks that could be apparent, and I think we're going to have to watchall of these as we go forward.
TARGETED ONCOLOGY: Looking beyond Lu-PSMA and the VISION trial, what do you think is most important for clinicians to emphasize in future efforts to treat patients with advanced prostate cancer effectively?
SARTOR: No. 1, we really need to start multidisciplinary care as soon as possible. Everybody can add value to the patient. If a patient is seeing a radiation oncologist, involving a urologist may be of benefit. If somebody is seeing a urologist, a medical oncologist could be helpful. As we move forward, particularly in these complex cases of patients with multiple areas of metastatic disease, coming together as teams can play an important role.
No. 2, we need to be aware of genetics. There are genetically targeted therapies now available. Folks are aware of the PARP inhibitors for homologous recombination repair defects, but things like pembrolizumab are also important. I mention pembrolizumab by name as a PD-1 inhibitor because this is approved in the context of mismatch repair or microsatellite instability (MSI)-high alterations, or even high tumor mutational burdens. Genetic testing is something I think we need to keep in mind, because sometimes the patients can have very robust responses to targeted therapies, provided they have the appropriate genetic milieu.
No. 3, as we move forward, we have to be cognizant of supportive aspects of our care, such as bone health. We have realized that a lot of patients can have pathogenic fractures and pathologic fractures. Mitigating that risk with things like denosumab or zoledronic acid is an important role for our clinicians to play in the management of patients.
TARGETED ONCOLOGY: What are the most exciting or important areas for researchers in this field to focus on?
SARTOR: Im excited about several areas. No. 1 is combination therapies. Currently, PSMA [Lu]-177 is being evaluated in combination with things like PSMA actinium-225. It's being looked at in combination with DNA repair inhibitors such as the PARP inhibitor olaparib, it's being looked at in combination with the PD-1 inhibitors like pembrolizumab, [and] its being evaluated in combination with stereotactic body radiotherapy. As we move forward, combination therapies are important.
Additional isotopes, combinations of isotopes, bispecific antibodies, and novel hormonal targeting agents that are being developed are also exciting, so there's a lot for us to keep aware of as this field marches forward.
TARGETED ONCOLOGY: PSMA-based radiotracers are the latest in a line of biomarkers used in prostate cancer imaging. Do you foresee other biomarkers becoming relevant? What role might PSMA have alongside them?
SARTOR: Combinations of PET imaging may yield very interesting results. For instance, we're having trouble treating emerging neuroendocrine prostate cancer. Often, after previous treatment with agents like abiraterone and enzalutamide, these neuroendocrine phenotypes emerge. The cell surface markers for neuroendocrine phenotypes may be very interesting. I'll mention the bombesin receptor as one. It turns out that these neuroendocrine tumors express receptors beyond just PSMA.
I think PSMA is a fabulous target, by the way, [but] different ways to image PSMA may also be important. There [are] also image-based biomarkers related to the use of immunotherapy. Being able to image things like PD-L1 [may] also [be] quite important.
As we go forward, Im seeing a whole series of newer PET [bio]markers being evaluated, and utility [may be] growing out of even combinations. The Australians today use 18 F-FDG PET in combination with PSMA PET, and by the way, I think that could potentially add value, but it needs to be properly evaluated in the context of prospective trials.
TARGETED ONCOLOGY: What is on the short-term horizon for research in prostate cancer treatment?
SARTOR: I think the short-term horizon in prostate cancer is going to revolve [around] moving these novel radiopharmaceuticals closer to the front of therapy. I've mentioned several trials, including the SPLASH trial, the PSMAfore trial, and the PSMA addition trial, which is for castration-sensitive [prostate cancer], upfront. All of these are going to be actively accruing subjects. I don't think we'll have results in the next 12 to 18 months, but nevertheless, that's going to be the next chain. In addition, we're going to see the rise of these combination therapies initially in phase 1 moving on to phase 2. And then I think we're going to evolve a whole series of novel biomarkers, and these are going to require additional testing, of course, but the field of biomarkers is alive and well. [It is] evolving so, so rapidly right now.
TARGETED ONCOLOGY: As phenotypic theranostics advance, what might be the role of genotypic precision medicine in prostate cancer? Do you think that these 2 areas will grow alongside one another?
SARTOR: I do. When we talk about precision medicine, I think most [but not all] of what weve become accustomed to is related to the genomic alterations that occur in the context of cancer, but phenotypic alterations such as PSMA expression [are] not going to be something you can detect with a gene rearrangement. Its really about protein expression. I think this area also has a bright future. I mentioned very particularly the expression of neuroendocrine markers. I mentioned the bombesin receptor, which is a gastrin-releasing peptide (GRP) receptor. Maybe somatostatin receptors could be important. Maybe other alterations such as DLL3 could be important. These would be called phenotypic biomarkers as opposed to genotypic biomarkers, which would be things like BRCA2 mutations, mismatch repair, rearrangements, etc.
Precision medicine is going to evolve, I think, on multiple fronts. The beauty of a targeted radiopharmaceutical is that almost anything that you can bind to on the cell surface potentially becomes a target. That means were going to have a vastly expanded series, in my opinion, over the next several decades of targets on cell surfacesnot just for prostate cancer, but for a whole series of different cancers. Right now, we have neuroendocrine cancers of the midgut, the so-called carcinoids, and those neuroendocrine-type cancers that are targeted, but I envision many, many more theranostics going forward, and [LuPSMA] is just a first step.
References
1. Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer.N Engl J Med. 2021;385(12):1091-1103. doi:10.1056/NEJMoa2107322
2. FDA grants priority review for investigational targeted radioligand therapy 177Lu-PSMA-617 for patients with metastatic castration-resistant prostate cancer (mCRPC). News release. Novartis. September 28, 2021. Accessed December 9, 2021. https://www.novartis.com/news/fda-grants-priority-review-investigational-targeted-radioligand-therapy-177lu-psma-617-patients-metastatic-castration-resistant-prostate-cancer-mcrpc
See the original post:
EP. 6B: Phenotypic Theranostics in the Future of Precision Medicine - Targeted Oncology
- New gene offers hope for preventive medicine against fractures [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Colon Cancer Gene Database May Assist Research Efforts [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Researchers discover gene that causes deafness [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene Study Yields New Clues to Breast Cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene key to chemotherapy efficacy [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene clues offer new hope for treating breast cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene that causes deafness pinpointed [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Gene that causes a form of deafness discovered [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Novel gene associated with Usher syndrome identified [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Translational Regenerative Medicine: Market Prospects 2012-2022 [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Two-day test can spot gene diseases in newborns [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fast Gene Screen May Help Sick Babies [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene therapies need new development models [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Rapid gene machines used to find cause of newborn illnesses [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene behind many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene responsible for many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Two-day test can spot gene diseases in newborns - Wed, 03 Oct 2012 PST [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Researchers Discover Gene Defect Linked to Deafness [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene diseases in newborns unveiled quicker [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Quicker gene test may help babies - Thu, 04 Oct 2012 PST [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Rapid gene-mapping test may diagnose disease in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 2-day test can spot gene diseases in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Gene diseases in newborns spotted with 2-day test [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Rare Gene Deletion Tied To Psychiatric Disease And Obesity [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai researchers discover gene signature that predicts prostate cancer survival [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Test Spots Newborn Gene Disease [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Gene signature predicts prostate cancer survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Researchers Discover Gene Signature that Predicts Prostate Cancer Survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Bioethics Panel Urges More Gene Privacy Protection [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- High Levels of Blood-Based Protein Specific to Mesothelioma [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Gene clues to help tackle skin disease [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Additive effect of small gene variations can increase risk of autism spectrum disorders [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- 2-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Two-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Gene Linked to Kidney Failure [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Nanoparticles seen as gene therapy advance [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Stem Cell Therapy for Sickle Cell Anemia - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Sickle Cell Anemia: Stem Cell Gene Therapy - Donald Kohn - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Finding A Cure For Cancer with Dr. Aaron Rapoport - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- First gene therapy to go on sale in Europe in 2013: company [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Nanomedicine: Infectious Diseases, Immunotherapy, Diagnostics, Antifibrotics, Toxicology And Gene Me - Video [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Stress gene linked to heart attack – Study [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Why not gift yourself with gene test this Christmas? [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- "Stress gene" may raise heart attack risk in healthy people [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- 'Stress Gene' Ups Heart Attack, Death Risk [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Common disorders: It's not the genes themselves, but how they are controlled [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- What is a gene? - Genetics Home Reference [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Medicine | Business Outline | About Us | TAKARA BIO INC. [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Therapy Clinical Trials Worldwide [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Genentech - Official Site [Last Updated On: December 21st, 2013] [Originally Added On: December 21st, 2013]
- Gene Therapy - American Medical Association [Last Updated On: December 23rd, 2013] [Originally Added On: December 23rd, 2013]
- Researchers identify gene that influences the ability to remember faces [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene That Influences Bonding Also Found To Impact Facial Recognition [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene Therapy Method Targets Tumor Blood Vessels [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Latin Americans inherited diabetes gene risk from Neanderthals [Last Updated On: December 26th, 2013] [Originally Added On: December 26th, 2013]
- Gene that influences the ability to remember faces identified [Last Updated On: December 30th, 2013] [Originally Added On: December 30th, 2013]
- Study supports a causal role in narcolepsy for a common genetic variant [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Increasing Investments in Molecular Biology Research Drives the Market for DNA Gene Chips, According to a New Trend ... [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Loss of Function of a Single Gene Linked to Diabetes in Mice [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Medicine and Health [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Therapy - Nature [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- KidsHealth for Parents - Gene Therapy and Children [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- Gene Patent Case Fuels U.S. Court Test of Stem Cell Right [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Gene Mutation Increases Certain Health Risks For Blacks, Study Finds [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Single faulty gene causes major type 2 diabetes symptom in mice [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- No 'brakes' -- Study finds mechanism for increased activity of oncogene in certain cancers [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- AML score that combines genetic and epigenetic changes might help guide therapy [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- Stem cell research identifies new gene targets in patients with Alzheimer's disease [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- 14 new gene targets in Alzheimer’s identified [Last Updated On: January 10th, 2014] [Originally Added On: January 10th, 2014]
- Scientists uncover new target for brain cancer treatment [Last Updated On: January 11th, 2014] [Originally Added On: January 11th, 2014]
- Tweaking MRI to Track Creatine May Spot Heart Problems Earlier, Penn Medicine Study Suggests [Last Updated On: January 13th, 2014] [Originally Added On: January 13th, 2014]
- RSNA: Gene Variation Associated with Brain Atrophy in Mild Cognitive Impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Keeping Stem Cells Pluripotent [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Gene variation associated with brain atrophy in mild cognitive impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Genes: MedlinePlus Medical Encyclopedia - National Library of ... [Last Updated On: January 15th, 2014] [Originally Added On: January 15th, 2014]
- Gene Therapy May Restore Sight in People With Rare Blinding Disease [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- Gene therapy treats blindness [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- New Genetic Clue to Lupus Is Found [Last Updated On: January 17th, 2014] [Originally Added On: January 17th, 2014]
- New Gene Machine Could Mean More Accurate Diagnosis [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]
- Same cell death pathway involved in three forms of blindness, study finds [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]