Cell and gene therapies seek to correct the root cause of an illness at the molecular level. These game-changing medicines are reshaping how we address previously untreatable illnesses transforming peoples lives.
Cell and gene therapy represent overlapping fields of research with similar therapeutic goals developing a treatment that can correct the underlying cause of a disease, often a rare inherited condition that can be life-threatening or debilitating and has limited treatment options.
While these technologies were initially developed in the context of treating rare diseases caused by a single faulty gene, they have since evolved towards tackling more common diseases, says Professor Rafael J. Yez-Muoz, director of the Centre of Gene and Cell Therapy (CGCT) at Royal Holloway University of London.
A powerful example is the chimeric antigen receptor (CAR) T-cell therapies, which have been approved for treating certain blood cancers. The approach involves genetically modifying a patients T cells in the laboratory before reintroducing them into the body to fight their disease.
For the first time, we had an example of gene therapy to treat a more common disease demonstrating that the technology has wide applicability, enthuses Yez-Muoz.
To date, 24 cellular and gene therapy products have received approval from the US Food and Drug Administration (FDA) including life-changing treatments for patients with rare diseases, such as inherited forms of blindness and neuromuscular conditions. A variety of gene and cell-based therapies for both rare and common diseases are also currently in development across many therapeutic areas, offering hope for many more families in coming years.
This webinar will provide an introduction to the regulatory framework for cell and gene therapies and highlight the importance of chemistry, manufacturing and controls. Watch to learn about regulatory concerns, safety and quality testing throughout the product lifecycle and key acronyms and terminology.
Gene therapies seek to introduce specific DNA sequences into a patients body to treat, prevent or potentially cure a disease. This may involve the delivery of a functional gene into cells to replace a gene that is missing or causing a problem or other strategies using nucleic acid sequences (such as antisense oligonucleotides or short interfering RNAs [siRNAs]) to reduce, restore or modify gene expression. More recently, scientists are also developing genome-editing technologies that aim to change the cells DNA at precise locations to treat a specific disease.
The key step in successful gene therapy relies on the safe and efficient delivery of genetic material into the target cells, which is carried out by packaging it into a suitable delivery vehicle (or vector). Many current gene therapies employ modified viruses based on adenoviruses, adeno-associated viruses (AAV), and lentiviruses as vectors due to their intrinsic ability to enter cells. But non-viral delivery systems such as lipid nanoparticles (LNPs) have also been successfully employed to deliver RNA-based therapeutics into cells.
A big advantage of using viral vectors for gene delivery is they are longer lasting than non-viral systems, states Dr. Rajvinder Karda, lecturer in gene therapy at University College London. Many of the rare diseases were aiming to tackle are severe and we need to achieve long-term gene expression for these treatments to be effective.
While improved technological prowess empowers the development of CRISPR-edited therapies, supply-chain and manufacturing hurdles still pose significant barriers to clinical and commercialization timelines. Watch this webinar to learn more about the state of CRISPR cell and gene therapies, challenges in CRISPR therapy manufacturing and a next-generation manufacturing facility.
Viral-vector gene therapies are either administered directly into the patients body (in vivo), or cells harvested from a patient are instead modified in the laboratory (ex vivo) and then reintroduced back into the body. Major challenges for in vivo gene delivery approaches are with the safe and efficient targeting of the therapeutic to the target cells and overcoming any potential immune responses to the vectors.
As well as getting the genetic material into the affected cells, we also need to try and limit it reaching other cells as expressing a gene in a cell where its not normally active could cause problems, explains Dr. Gerry McLachlan, group leader at the Roslin Institute in Edinburgh.
For example, the liver was identified as a major site of toxicity for an AAV-based gene therapy approved for treating spinal muscular atrophy (SMA), a type of motor neuron disease that affects people from a very young age.
Unfortunately, these viruses are leaky as theyre also going to organs that dont need therapy meaning you can get these off-target effects, says Karda. Theres still work to be done to develop and refine these technologies to make them more cell- and organ-specific.
It is also important to ensure the gene is expressed at the right level in the affected cells too high and it may cause side effects and too little may render the treatment ineffective. In a recent major advancement in the field, scientists developed a dimmer switch system Xon that enables gene expression to be precisely controlled through exposure to an orally delivered small molecule drug. This novel system offers an unprecedented opportunity to refine and tailor the application of gene therapies in humans.
Download this whitepaper to discover an electroporation system that resulted in CAR transfection efficiencies as high as 70% in primary human T cells, can avoid the potential risks associated with viral transduction and is able to produce CAR T cells at a sufficient scale for clinical and therapeutic applications.
In 1989, a team of researchers identified the gene that causes the chronic, life-limiting inherited disease cystic fibrosis (CF) the cystic fibrosis transmembrane conductance regulator (CFTR). This was the first ever disease-causing gene to be discovered marking a major milestone in the field of human genetics. In people with CF, mutations in the CFTR gene can result in no CTFR protein, or the protein being made incorrectly or at insufficient levels all of which lead to a cascade of problems that affect the lungs and other organs.
Our team focuses on developing gene therapies to treat respiratory diseases in particular, were aiming to deliver the CTFR gene into lung cells to treat CF patients, says McLachlan.
The results of the UK Respiratory Gene Therapy Consortiums most recent clinical trial showed that an inhaled non-viral CTFR gene therapy formulation led to improvements in patient lung function.
While this was encouraging, the effects were modest and we need to develop a more potent delivery vehicle, explains McLachlan. Weve also been working on a viral-based gene therapy using a lentiviral vector to introduce a healthy copy of the CTFR gene into cells of the lung.
Kardas team focuses on developing novel gene therapy and gene-editing treatments for incurable genetic diseases affecting the central and peripheral nervous system and Yez-Muoz is aiming to develop new treatments for rare neurodegenerative diseases that affect children, including SMA and ataxia telangiectasia (AT).
But a significant barrier for academic researchers around the world is accessing the dedicated resources, facilities and expertise required to scale up and work towards the clinical development and eventually the commercial production of gene and cell therapies. These challenges will need to be addressed and overcome if these important advancements are to successfully deliver their potentially life-changing benefits to patients.
Download this app note to discover how electron activated dissociation can obtain in-depth structural characterization of singly charged, ionizable lipids and related impurities, decrease risk of missing critical low abundance impurities and increase confidence in product quality assessment.
After many decades of effort, the future of gene and cell therapies is incredibly promising. A flurry of recent successes has led to the approval of several life-changing treatments for patients and many more products are in development.
Its no longer just about hope, but now its a reality with a growing number of rare diseases that can be effectively treated with these therapies, describes Yez-Muoz. We now need to think about how we can scale up these technologies to address the thousands of rare diseases that exist and even within these diseases, people will have different mutations, which will complicate matters even further.
But as more of these gene and cell-based therapies are approved, there is a growing urgency to address the challenge of equitable access to these innovative treatments around the world.
Gene therapies have the dubious honor of being the most expensive treatments ever and this isnt sustainable in the longer term, says Yez-Muoz. Just imagine being a parent and knowing there is an effective therapy but your child cant access it that would be absolutely devastating.
More:
Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks
- New gene offers hope for preventive medicine against fractures [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Colon Cancer Gene Database May Assist Research Efforts [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Researchers discover gene that causes deafness [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene Study Yields New Clues to Breast Cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene key to chemotherapy efficacy [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene clues offer new hope for treating breast cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene that causes deafness pinpointed [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Gene that causes a form of deafness discovered [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Novel gene associated with Usher syndrome identified [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Translational Regenerative Medicine: Market Prospects 2012-2022 [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Two-day test can spot gene diseases in newborns [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fast Gene Screen May Help Sick Babies [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene therapies need new development models [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Rapid gene machines used to find cause of newborn illnesses [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene behind many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene responsible for many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Two-day test can spot gene diseases in newborns - Wed, 03 Oct 2012 PST [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Researchers Discover Gene Defect Linked to Deafness [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene diseases in newborns unveiled quicker [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Quicker gene test may help babies - Thu, 04 Oct 2012 PST [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Rapid gene-mapping test may diagnose disease in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 2-day test can spot gene diseases in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Gene diseases in newborns spotted with 2-day test [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Rare Gene Deletion Tied To Psychiatric Disease And Obesity [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai researchers discover gene signature that predicts prostate cancer survival [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Test Spots Newborn Gene Disease [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Gene signature predicts prostate cancer survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Researchers Discover Gene Signature that Predicts Prostate Cancer Survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Bioethics Panel Urges More Gene Privacy Protection [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- High Levels of Blood-Based Protein Specific to Mesothelioma [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Gene clues to help tackle skin disease [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Additive effect of small gene variations can increase risk of autism spectrum disorders [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- 2-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Two-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Gene Linked to Kidney Failure [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Nanoparticles seen as gene therapy advance [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Stem Cell Therapy for Sickle Cell Anemia - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Sickle Cell Anemia: Stem Cell Gene Therapy - Donald Kohn - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Finding A Cure For Cancer with Dr. Aaron Rapoport - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- First gene therapy to go on sale in Europe in 2013: company [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Nanomedicine: Infectious Diseases, Immunotherapy, Diagnostics, Antifibrotics, Toxicology And Gene Me - Video [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Stress gene linked to heart attack – Study [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Why not gift yourself with gene test this Christmas? [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- "Stress gene" may raise heart attack risk in healthy people [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- 'Stress Gene' Ups Heart Attack, Death Risk [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Common disorders: It's not the genes themselves, but how they are controlled [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- What is a gene? - Genetics Home Reference [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Medicine | Business Outline | About Us | TAKARA BIO INC. [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Therapy Clinical Trials Worldwide [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Genentech - Official Site [Last Updated On: December 21st, 2013] [Originally Added On: December 21st, 2013]
- Gene Therapy - American Medical Association [Last Updated On: December 23rd, 2013] [Originally Added On: December 23rd, 2013]
- Researchers identify gene that influences the ability to remember faces [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene That Influences Bonding Also Found To Impact Facial Recognition [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene Therapy Method Targets Tumor Blood Vessels [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Latin Americans inherited diabetes gene risk from Neanderthals [Last Updated On: December 26th, 2013] [Originally Added On: December 26th, 2013]
- Gene that influences the ability to remember faces identified [Last Updated On: December 30th, 2013] [Originally Added On: December 30th, 2013]
- Study supports a causal role in narcolepsy for a common genetic variant [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Increasing Investments in Molecular Biology Research Drives the Market for DNA Gene Chips, According to a New Trend ... [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Loss of Function of a Single Gene Linked to Diabetes in Mice [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Medicine and Health [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Therapy - Nature [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- KidsHealth for Parents - Gene Therapy and Children [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- Gene Patent Case Fuels U.S. Court Test of Stem Cell Right [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Gene Mutation Increases Certain Health Risks For Blacks, Study Finds [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Single faulty gene causes major type 2 diabetes symptom in mice [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- No 'brakes' -- Study finds mechanism for increased activity of oncogene in certain cancers [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- AML score that combines genetic and epigenetic changes might help guide therapy [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- Stem cell research identifies new gene targets in patients with Alzheimer's disease [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- 14 new gene targets in Alzheimer’s identified [Last Updated On: January 10th, 2014] [Originally Added On: January 10th, 2014]
- Scientists uncover new target for brain cancer treatment [Last Updated On: January 11th, 2014] [Originally Added On: January 11th, 2014]
- Tweaking MRI to Track Creatine May Spot Heart Problems Earlier, Penn Medicine Study Suggests [Last Updated On: January 13th, 2014] [Originally Added On: January 13th, 2014]
- RSNA: Gene Variation Associated with Brain Atrophy in Mild Cognitive Impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Keeping Stem Cells Pluripotent [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Gene variation associated with brain atrophy in mild cognitive impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Genes: MedlinePlus Medical Encyclopedia - National Library of ... [Last Updated On: January 15th, 2014] [Originally Added On: January 15th, 2014]
- Gene Therapy May Restore Sight in People With Rare Blinding Disease [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- Gene therapy treats blindness [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- New Genetic Clue to Lupus Is Found [Last Updated On: January 17th, 2014] [Originally Added On: January 17th, 2014]
- New Gene Machine Could Mean More Accurate Diagnosis [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]
- Same cell death pathway involved in three forms of blindness, study finds [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]