Introduction
Coronary artery disease (CAD) is the major cause of death throughout the world.1 As reported by GBD 2017 Causes of Death Collaborators, the estimated years of life lost (YLLs) increased for CAD (ranked first in 2017).2 During the past decade, a marked rising trend of atherosclerosis-related burden (especially for CAD) in Eastern Asia was observed.3 Although endothelial dysfunction contributes essentially to the atherosclerosis, the molecular pathways underlying disease occurrence are not fully understood.
MicroRNAs (miRNAs) play important roles in the pathophysiology of cardiovascular diseases through the posttranscriptional control of gene networks.4,5 Among them, miR-217 was reported to aggravate atherosclerosis and promote cardiovascular dysfunction through downregulating a network of endothelial NO synthase (eNOS) activators, including vascular endothelial growth factor (VEGF).6 VEGF, a signal protein stimulating the formation of blood vessels, acted as a potential biomarker to predict the occurrence of CAD, and increased VEGF level was associated with poor coronary collateralization in patients with stable CAD.7 Besides, inhibition of miR-217 could protect against myocardial ischemia-reperfusion injury through inactivating NF-kappaB and MAPK pathways by targeting DUSP14.8 These findings highlighted a potential role of miR-217 in pathogenesis of CAD. Whether genetic variants of the miR-217 gene contributed to the occurrence of CAD was still undetermined and worthy to be explored. Thus, we aimed to conduct a casecontrol study among Chinese population to evaluate the associations of genetic variants of the miR-217 gene with CAD risk, as well as plasma level of VEGF.
In the current casecontrol study, we totally recruited 498 CAD patients and 499 healthy controls (frequency-matched by age, gender, and living areas). CAD diagnosis of any major coronary artery with diameter stenosis of more than 50%, or previous angioplasty, coronary bypass surgery, or myocardial infarction (MI) history verified by electrocardiogram (ECG) changes was evaluated by two cardiologists.9 This study has been approved by the institute committee of Jinan peoples Hospital. All participants in the study received informed consent and followed the guidelines set out in the Helsinki declaration.
Fasting venous blood was collected into plasma tubes containing 0.1% ethylenediaminetetraacetic acid (EDTA) and stored at 80C prior to analysis. Total RNAs were isolated using the miRNeasy kit (Qiagen) according to the manufacturers protocol. TaqMan miRNA assay kits (Applied Biosystems) were used for miRNA amplification, and real-time polymerase chain reaction (RT-PCR) was performed to detect miR-217, while cel-miRNA-39 was added as a spike-in control. Plasma VEGF level among the healthy controls was determined by multiplex analysis using Bioplex suspension arrays (Bio-Rad, Veenendaal, The Netherlands) according to the manufacturers specifications. All samples were thawed only once and measured three times.
TagSNPs were selected among the 1kb flanking region of the miR-217 gene according to 1000 genome CHB data (phase 3, minor allele frequency 5%, pairwise r20.8) using the Haploview 4.2 software.10 Finally, four tagSNPs, including rs6724872, rs4999828, rs10206823, and rs41291177, were determined. Genomic DNA was extracted from peripheral blood samples using QIAamp DNA blood Mini Kit (Qiagen, Hilden, Germany). Genotyping was performed by TaqMan analysis (Applied Biosystems [ABI], Foster City, CA) according to the manufacturers instructions. A randomly selected group of 10% of the samples was tested twice by different individuals with 100% concordance of results.
Statistical analyses were carried out using IBM SPSS Statistics version 22.0, while two-tailed P-values <0.05 were considered significant. All the demographic data were presented as proportions. Deviation of candidate SNPs from Hardy-Weinberg equilibrium in the control group was assessed by the goodness-of-fit 2 test. Allele frequencies and demographic variables between the two groups were assessed with chi-square tests. Odds ratios (ORs), 95% confidence levels (CIs), and corresponding P values were calculated for each SNP using logistic regression analysis, adjusted for age, gender, smoking status, drinking status, diabetes, and hypertension.
Table 1 lists the comparison of clinical features between 498 CAD cases and 499 controls. The results showed that there was no significant difference in age, gender, drinking status, diabetes and hypertension (P > 0.05). However, compared with the control group, the patients have higher percentage of smokers (controls vs cases: 26.7% vs 42.4%; P < 0.001).
Table 1 Clinical Characteristics of CAD Cases and Controls
We first evaluated the association between plasma level of miR-217 and CAD risk to validate the role of miR-217 in CAD development. As shown in Figure 1, plasma level of miR-217 was analyzed in 50 randomly selected patients with CAD and controls. We found plasma level of miR-217 in CAD cases was significantly higher than that in controls (P < 0.001).
Figure 1 Plasma level of miR-217 and CAD risk. Plasma level of miR-217 was analyzed in 50 randomly selected patients with CAD and controls, and plasma level of miR-217 in CAD cases was significantly higher than that in controls (P < 0.001).
As shown in Table 2, all four tagSNPs (rs6724872, rs4999828, rs10206823, and rs41291177) were in Hardy-Weinberg equilibrium in healthy controls, which indicated that the sampled subjects were representative of the population without any deviation of genotype frequencies (P>0.05). Of the four tagSNPs in the miR-217 gene region, rs6724872 and rs4999828 were significantly associated with increased risk of CAD (P value was smaller than 0.05 even after Bonferroni multiple adjustment). Compared with the G allele, C allele of rs6724872 was significantly associated with 1.73-fold increased risk of CAD (95% CI: 1.252.39; P=0.001). While C allele of rs4999828 was significantly associated with 1.75-fold increased risk of CAD, compared with T allele (95% CI: 1.342.29; P=4105).
Table 2 Associations Between Genetic Variations and Risk of CAD
To further evaluate the influence of susceptibility SNPs upon plasma level of VEGF, we compared the VEGF level among healthy controls with different genotypes of rs6724872 and rs4999828. As shown in Figure 2, with the increase in number of minor alleles, the plasma level of VEGF increased significantly for both rs6724872 and rs4999828 (P < 0.001). This means rs6724872 and rs4999828 were significantly associated with higher level of VEGF.
Figure 2 Circulating level of VEGF in subjects with different miR-217 genotypes. Plasma VEGF level among the healthy controls were determined by multiplex analysis using Bioplex suspension arrays. With the increasement of number of minor alleles, the plasma level of VEGF increased significantly for both rs6724872 and rs4999828 (P < 0.001).
Coronary heart disease is a common and frequent disease, which brings serious trouble to peoples quality of life.2,11 The exploration of the etiology of CAD is a complex and systematic project, and researchers have explored multiple aspects and perspectives.12,13 The current study explored associations between the associations of genetic variants of the miR-217 gene with CAD risk, as well as plasma level of VEGF, using a casecontrol study design. We found plasma level of miR-217, rs6724872 and rs4999828 were significantly associated with increased risk of CAD, as well as higher level of VEGF. These findings highlighted the important role of miR-217 in the pathogenesis of CAD and potential targets for intervention.
MiRNAs are implicated in the regulation of proliferation and apoptosis of endothelial cells, induction of immune responses and different stages of plaque formation, which finally results atherosclerosis and CAD.5,14,15 A previous meta-analysis identified that a total of 48 dysregulated miRNAs were confirmed for their role in CAD development, while MiR-122-5p and miR-133a-3p may be valuable biomarkers for CAD.16 Another two studies confirmed that predictive value of miRNA-21 and miRNA-126 on coronary restenosis after percutaneous coronary intervention (PCI) in patients with CAD.17,18 Previously, miR-217 was most studied in the field of cancer biology.1923 Zhao et al reported that downregulated miR-217 could regulate KRAS and function as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC).19 Further, Menghini et al pinpointed miR-217 as an endogenous inhibitor of SirT1 was potentially amenable to the prevention of endothelial dysfunction.24 Recently, Yebenes then reported that miR-217 could aggravate atherosclerosis and promote cardiovascular dysfunction.6 Taking the findings above together, it is important to extensively explore the role of miR-217 in the pathogenesis of CAD and to investigate the association of its genetic variants with the risk of disease development.
Genetic variants in miRNAs have been widely explored for their functions among pathophysiological mechanism of cardiovascular diseases, and offer new insight into the causal role of microRNAs in CAD.2531 Glinsky et al revealed identifies a consensus disease phenocode through a SNP-guided microRNA map of fifteen common human disorders.31 Ghanbari et al systematically evaluated 230 variants located within miRNA-binding sites in the 3-untranslated region of 155 cardiometabolic genes, and 37 were functional in their corresponding genomic loci.28 In the current study, rs6724872 and rs4999828 were significantly associated with increased risk of CAD, as well as higher level of VEGF, which means the important role in CAD development. Using RegulomeDB 2.0, we found both rs6724872 and rs4999828 were located in the TF binding and DNase peak region.32 The findings of HaploReg v4.1 also validated their functions in gene regulation.33
Conclusively, We found rs6724872 and rs4999828 were significantly associated with increased risk of CAD, as well as higher level of VEGF. Although these findings need further validation in larger cohorts for definitive results, they reveal new mechanisms by which genetic variations in miR-217 gene may coordinate the development of CAD. The gathered evidence could be further exploited in prevention strategies or screening protocols for CAD.
This study was supported by medical and health science and technology development planning project of Shandong Province (No. 202003011008) and the second batch of science and technology projects of Jinan Health Committee (2020-03-55).
The authors declare that they have no conflict of interest.
1. Hata J, Kiyohara Y. Epidemiology of stroke and coronary artery disease in Asia. Circ J. 2013;77(8):19231932. doi:10.1253/circj.CJ-13-0786
2. Collaborators GBDCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 19802017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):17361788.
3. Wong MC, Zhang DX, Wang HH. Rapid emergence of atherosclerosis in Asia: a systematic review of coronary atherosclerotic heart disease epidemiology and implications for prevention and control strategies. Curr Opin Lipidol. 2015;26(4):257269. doi:10.1097/MOL.0000000000000191
4. Widmer RJ, Lerman LO, Lerman A. MicroRNAs: small molecule, big potential for coronary artery disease. Eur Heart J. 2016;37(22):17501752. doi:10.1093/eurheartj/ehw067
5. Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the pathogenesis of coronary artery disease. Front Cardiovasc Med. 2021;8:632392. doi:10.3389/fcvm.2021.632392
6. de Yebenes VG, Briones AM, Martos-Folgado I, et al. Aging-associated miR-217 aggravates atherosclerosis and promotes cardiovascular dysfunction. Arterioscler Thromb Vasc Biol. 2020;40(10):24082424. doi:10.1161/ATVBAHA.120.314333
7. Sun Z, Shen Y, Lu L, et al. Increased serum level of soluble vascular endothelial growth factor receptor-1 is associated with poor coronary collateralization in patients with stable coronary artery disease. Circ J. 2014;78(5):11911196. doi:10.1253/circj.CJ-13-1143
8. Li Y, Fei L, Wang J, Niu Q. Inhibition of miR-217 protects against myocardial ischemia-reperfusion injury through inactivating NF-kappaB and MAPK pathways. Cardiovasc Eng Technol. 2020;11(2):219227. doi:10.1007/s13239-019-00452-z
9. Li J, Zhang Y, Guo X, Wu Y, Huang R, Han X. Circulating level of monocyte chemoattractant protein-1 and risk of coronary artery disease: a case-control and Mendelian randomization study. Pharmgenomics Pers Med. 2021;14:553559.
10. Barrett JC. Haploview: visualization and analysis of SNP genotype data. Cold Spring Harb Protoc. 2009;2009(10):pdbip71. doi:10.1101/pdb.ip71
11. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146e603.
12. Manfrini O, Yoon J, van der Schaar M, et al. Sex differences in modifiable risk factors and severity of coronary artery disease. J Am Heart Assoc. 2020;9(19):e017235. doi:10.1161/JAHA.120.017235
13. Lonnebakken MT. Cardiometabolic risk factors and coronary artery disease in women. J Womens Health (Larchmt). 2020;29(12):14891490. doi:10.1089/jwh.2020.8755
14. Sanlialp M, Dodurga Y, Uludag B, et al. Peripheral blood mononuclear cell microRNAs in coronary artery disease. J Cell Biochem. 2020;121(4):30053009. doi:10.1002/jcb.29557
15. Zhang X, Cai H, Zhu M, Qian Y, Lin S, Li X. Circulating microRNAs as biomarkers for severe coronary artery disease. Medicine (Baltimore). 2020;99(17):e19971. doi:10.1097/MD.0000000000019971
16. Wang -S-S, Wu L-J, Li -J-J-H, Xiao H-B, He Y, Yan Y-X. A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sci. 2018;215:170181. doi:10.1016/j.lfs.2018.11.016
17. Dai H, Wang J, Shi Z, Ji X, Huang Y, Zhou R. Predictive value of miRNA-21 on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: a protocol for systematic review and meta-analysis. Medicine (Baltimore). 2021;100(10):e24966. doi:10.1097/MD.0000000000024966
18. Qiu X, Wang J, Shi Z, Ji X, Huang Y, Dai H. Predictive value of miRNA-126 on in-stent restenosis in patients with coronary heart disease: a protocol for meta-analysis and bioinformatics analysis. Medicine (Baltimore). 2021;100(22):e25887. doi:10.1097/MD.0000000000025887
19. Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis. 2010;31(10):17261733. doi:10.1093/carcin/bgq160
20. Deng S, Zhu S, Wang B, et al. Chronic pancreatitis and pancreatic cancer demonstrate active epithelial-mesenchymal transition profile, regulated by miR-217-SIRT1 pathway. Cancer Lett. 2014;355(2):184191. doi:10.1016/j.canlet.2014.08.007
21. Nishioka C, Ikezoe T, Yang J, Nobumoto A, Tsuda M, Yokoyama A. Downregulation of miR-217 correlates with resistance of Ph(+) leukemia cells to ABL tyrosine kinase inhibitors. Cancer Sci. 2014;105(3):297307. doi:10.1111/cas.12339
22. Popov A, Szabo A, Mandys V. Small nucleolar RNA U91 is a new internal control for accurate microRNAs quantification in pancreatic cancer. BMC Cancer. 2015;15:774. doi:10.1186/s12885-015-1785-9
23. Xi S, Inchauste S, Guo H, et al. Cigarette smoke mediates epigenetic repression of miR-217 during esophageal adenocarcinogenesis. Oncogene. 2015;34(44):55485559. doi:10.1038/onc.2015.10
24. Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120(15):15241532. doi:10.1161/CIRCULATIONAHA.109.864629
25. Borghini A, Andreassi MG. Genetic polymorphisms offer insight into the causal role of microRNA in coronary artery disease. Atherosclerosis. 2018;269:6370. doi:10.1016/j.atherosclerosis.2017.12.022
26. Joehanes R, Zhang X, Huan T, et al. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 2017;18(1):16. doi:10.1186/s13059-016-1142-6
27. Kaudewitz D, Skroblin P, Bender LH, et al. Association of MicroRNAs and YRNAs with platelet function. Circ Res. 2016;118(3):420432. doi:10.1161/CIRCRESAHA.114.305663
28. Ghanbari M, Franco OH, de Looper HW, Hofman A, Erkeland SJ, Dehghan A. Genetic variations in MicroRNA-binding sites affect MicroRNA-mediated regulation of several genes associated with cardio-metabolic phenotypes. Circ Cardiovasc Genet. 2015;8(3):473486. doi:10.1161/CIRCGENETICS.114.000968
29. Li L, He M, Zhou L, et al. A solute carrier family 22 member 3 variant rs3088442 G>A associated with coronary heart disease inhibits lipopolysaccharide-induced inflammatory response. J Biol Chem. 2015;290(9):53285340. doi:10.1074/jbc.M114.584953
30. Miller CL, Haas U, Diaz R, et al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 2014;10(3):e1004263. doi:10.1371/journal.pgen.1004263
31. Glinsky GV. An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle. 2008;7(16):25702583. doi:10.4161/cc.7.16.6524
32. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):17901797. doi:10.1101/gr.137323.112
33. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Databaseissue):D930934. doi:10.1093/nar/gkr917
More here:
Association of Genetic Variants in miR-217 Gene with Risk of Coronary | PGPM - Dove Medical Press
- New gene offers hope for preventive medicine against fractures [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Colon Cancer Gene Database May Assist Research Efforts [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Researchers discover gene that causes deafness [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene Study Yields New Clues to Breast Cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene key to chemotherapy efficacy [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene clues offer new hope for treating breast cancer [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Gene that causes deafness pinpointed [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Gene that causes a form of deafness discovered [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Novel gene associated with Usher syndrome identified [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Translational Regenerative Medicine: Market Prospects 2012-2022 [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Two-day test can spot gene diseases in newborns [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Fast Gene Screen May Help Sick Babies [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene therapies need new development models [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Rapid gene machines used to find cause of newborn illnesses [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene behind many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene responsible for many spontaneous breast cancers identified [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Two-day test can spot gene diseases in newborns - Wed, 03 Oct 2012 PST [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Researchers Discover Gene Defect Linked to Deafness [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Gene diseases in newborns unveiled quicker [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Quicker gene test may help babies - Thu, 04 Oct 2012 PST [Last Updated On: October 4th, 2012] [Originally Added On: October 4th, 2012]
- Rapid gene-mapping test may diagnose disease in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 2-day test can spot gene diseases in newborns [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Gene diseases in newborns spotted with 2-day test [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- Rare Gene Deletion Tied To Psychiatric Disease And Obesity [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Mount Sinai researchers discover gene signature that predicts prostate cancer survival [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Test Spots Newborn Gene Disease [Last Updated On: October 10th, 2012] [Originally Added On: October 10th, 2012]
- Gene signature predicts prostate cancer survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Researchers Discover Gene Signature that Predicts Prostate Cancer Survival [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Bioethics Panel Urges More Gene Privacy Protection [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- High Levels of Blood-Based Protein Specific to Mesothelioma [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- Gene clues to help tackle skin disease [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- Additive effect of small gene variations can increase risk of autism spectrum disorders [Last Updated On: October 15th, 2012] [Originally Added On: October 15th, 2012]
- 2-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Two-gene test predicts which patients with heart failure respond best to beta-blocker drug [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- Gene Linked to Kidney Failure [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Nanoparticles seen as gene therapy advance [Last Updated On: October 17th, 2012] [Originally Added On: October 17th, 2012]
- Stem Cell Therapy for Sickle Cell Anemia - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Sickle Cell Anemia: Stem Cell Gene Therapy - Donald Kohn - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- Finding A Cure For Cancer with Dr. Aaron Rapoport - Video [Last Updated On: October 31st, 2012] [Originally Added On: October 31st, 2012]
- First gene therapy to go on sale in Europe in 2013: company [Last Updated On: November 7th, 2012] [Originally Added On: November 7th, 2012]
- Nanomedicine: Infectious Diseases, Immunotherapy, Diagnostics, Antifibrotics, Toxicology And Gene Me - Video [Last Updated On: November 14th, 2012] [Originally Added On: November 14th, 2012]
- Stress gene linked to heart attack – Study [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Why not gift yourself with gene test this Christmas? [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- "Stress gene" may raise heart attack risk in healthy people [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- 'Stress Gene' Ups Heart Attack, Death Risk [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Common disorders: It's not the genes themselves, but how they are controlled [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- What is a gene? - Genetics Home Reference [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Medicine | Business Outline | About Us | TAKARA BIO INC. [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Gene Therapy Clinical Trials Worldwide [Last Updated On: December 20th, 2013] [Originally Added On: December 20th, 2013]
- Genentech - Official Site [Last Updated On: December 21st, 2013] [Originally Added On: December 21st, 2013]
- Gene Therapy - American Medical Association [Last Updated On: December 23rd, 2013] [Originally Added On: December 23rd, 2013]
- Researchers identify gene that influences the ability to remember faces [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene That Influences Bonding Also Found To Impact Facial Recognition [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Gene Therapy Method Targets Tumor Blood Vessels [Last Updated On: December 24th, 2013] [Originally Added On: December 24th, 2013]
- Latin Americans inherited diabetes gene risk from Neanderthals [Last Updated On: December 26th, 2013] [Originally Added On: December 26th, 2013]
- Gene that influences the ability to remember faces identified [Last Updated On: December 30th, 2013] [Originally Added On: December 30th, 2013]
- Study supports a causal role in narcolepsy for a common genetic variant [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Increasing Investments in Molecular Biology Research Drives the Market for DNA Gene Chips, According to a New Trend ... [Last Updated On: January 2nd, 2014] [Originally Added On: January 2nd, 2014]
- Loss of Function of a Single Gene Linked to Diabetes in Mice [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Medicine and Health [Last Updated On: January 3rd, 2014] [Originally Added On: January 3rd, 2014]
- Gene Therapy - Nature [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- KidsHealth for Parents - Gene Therapy and Children [Last Updated On: January 5th, 2014] [Originally Added On: January 5th, 2014]
- Gene Patent Case Fuels U.S. Court Test of Stem Cell Right [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Gene Mutation Increases Certain Health Risks For Blacks, Study Finds [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- Single faulty gene causes major type 2 diabetes symptom in mice [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- No 'brakes' -- Study finds mechanism for increased activity of oncogene in certain cancers [Last Updated On: January 6th, 2014] [Originally Added On: January 6th, 2014]
- AML score that combines genetic and epigenetic changes might help guide therapy [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- Stem cell research identifies new gene targets in patients with Alzheimer's disease [Last Updated On: January 9th, 2014] [Originally Added On: January 9th, 2014]
- 14 new gene targets in Alzheimer’s identified [Last Updated On: January 10th, 2014] [Originally Added On: January 10th, 2014]
- Scientists uncover new target for brain cancer treatment [Last Updated On: January 11th, 2014] [Originally Added On: January 11th, 2014]
- Tweaking MRI to Track Creatine May Spot Heart Problems Earlier, Penn Medicine Study Suggests [Last Updated On: January 13th, 2014] [Originally Added On: January 13th, 2014]
- RSNA: Gene Variation Associated with Brain Atrophy in Mild Cognitive Impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Keeping Stem Cells Pluripotent [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Gene variation associated with brain atrophy in mild cognitive impairment [Last Updated On: January 14th, 2014] [Originally Added On: January 14th, 2014]
- Genes: MedlinePlus Medical Encyclopedia - National Library of ... [Last Updated On: January 15th, 2014] [Originally Added On: January 15th, 2014]
- Gene Therapy May Restore Sight in People With Rare Blinding Disease [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- Gene therapy treats blindness [Last Updated On: January 16th, 2014] [Originally Added On: January 16th, 2014]
- New Genetic Clue to Lupus Is Found [Last Updated On: January 17th, 2014] [Originally Added On: January 17th, 2014]
- New Gene Machine Could Mean More Accurate Diagnosis [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]
- Same cell death pathway involved in three forms of blindness, study finds [Last Updated On: January 18th, 2014] [Originally Added On: January 18th, 2014]