Preventive aerobic training preserves sympathovagal function and improves DNA repair capacity of peripheral blood mononuclear cells in rats with…

Posted: April 20, 2022 at 10:05 am

Edwardson, D. W. et al. Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr. Drug Metab. 16, 412426. https://doi.org/10.2174/1389200216888150915112039 (2015).

CAS Article Google Scholar

Abdel-Qadir, H. et al. A population-based study of cardiovascular mortality following early-stage breast cancer. JAMA Cardiol. 2, 8893. https://doi.org/10.1001/jamacardio.2016.3841 (2017).

Article Google Scholar

Hamo, C. E. & Bloom, M. W. Getting to the heart of the matter: An overview of cardiac toxicity related to cancer therapy. Clin. Med. Insights Cardiol. 9, 4751. https://doi.org/10.4137/cmc.S19704 (2015).

CAS Article Google Scholar

Koutsoukis, A. et al. Cardio-oncology: A focus on cardiotoxicity. Eur. Cardiol. 13, 6469. https://doi.org/10.15420/ecr.2017:17:2 (2018).

Article Google Scholar

Cai, F. et al. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment. Mol. Clin. Oncol. 11, 1523. https://doi.org/10.3892/mco.2019.1854 (2019).

CAS Article Google Scholar

Kang, Y. & Scherrer-Crosbie, M. Echocardiography imaging of cardiotoxicity. Cardiol. Clin. 37, 419427. https://doi.org/10.1016/j.ccl.2019.07.006 (2019).

Article Google Scholar

Lipshultz, S. E. et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: Pathophysiology, course, monitoring, management, prevention, and research directions: A scientific statement from the American Heart Association. Circulation 128, 19271995. https://doi.org/10.1161/CIR.0b013e3182a88099 (2013).

Article Google Scholar

Michel, L. et al. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: A meta-analysis. Eur. J. Heart Fail. 22, 350361. https://doi.org/10.1002/ejhf.1631 (2020).

CAS Article Google Scholar

Lipshultz, S. E. et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J. Clin. Oncol. 23, 26292636. https://doi.org/10.1200/jco.2005.12.121 (2005).

CAS Article Google Scholar

Lakoski, S. G., Jones, L. W., Krone, R. J., Stein, P. K. & Scott, J. M. Autonomic dysfunction in early breast cancer: Incidence, clinical importance, and underlying mechanisms. Am. Heart J. 170, 231241. https://doi.org/10.1016/j.ahj.2015.05.014 (2015).

Article Google Scholar

Arab, C. et al. Heart rate variability measure in breast cancer patients and survivors: A systematic review. Psychoneuroendocrinology 68, 5768. https://doi.org/10.1016/j.psyneuen.2016.02.018 (2016).

Article Google Scholar

Lonar-Turukalo, T. et al. Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol. Meas. 36, 727739. https://doi.org/10.1088/0967-3334/36/4/727 (2015).

Article Google Scholar

Merlet, N. et al. Increased beta2-adrenoceptors in doxorubicin-induced cardiomyopathy in rat. PLoS ONE 8, e64711. https://doi.org/10.1371/journal.pone.0064711 (2013).

ADS CAS Article Google Scholar

Xu, X. L. et al. Effects of carvedilol on M2 receptors and cholinesterase-positive nerves in adriamycin-induced rat failing heart. Autonomic Neurosci. Basic Clin. 130, 616. https://doi.org/10.1016/j.autneu.2006.04.005 (2006).

CAS Article Google Scholar

Koba, S. Angiotensin II, oxidative stress, and sympathetic nervous system hyperactivity in heart failure. Yonago Acta Med. 61, 103109. https://doi.org/10.33160/yam.2018.06.002 (2018).

CAS Article Google Scholar

Rabelo, E. et al. Baroreflex sensitivity and oxidative stress in adriamycin-induced heart failure. 38, 576-580. https://doi.org/10.1161/hy09t1.096185 (2001).

McTiernan, A. et al. Physical activity in cancer prevention and survival: A systematic review. Med. Sci. Sports Exerc. 51, 12521261. https://doi.org/10.1249/MSS.0000000000001937 (2019).

Article Google Scholar

Ghignatti, P. V. C., Nogueira, L. J., Lehnen, A. M. & Leguisamo, N. M. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: A systematic review with meta-analysis of preclinical studies. Sci. Rep. 11, 6330. https://doi.org/10.1038/s41598-021-83877-8 (2021).

CAS Article Google Scholar

Grssler, B., Thielmann, B., Bckelmann, I. & Hkelmann, A. Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: A systematic review. 12. https://doi.org/10.3389/fphys.2021.657274 (2021).

Bhati, P., Singla, D. & Hussain, D. M. Resistance training and modulation of cardiac autonomic control in animal models: A systematic review. Compar. Exercise Physiol. https://doi.org/10.3920/CEP180033 (2018).

Article Google Scholar

Feitosa, L. A. S. et al. Resistance training improves cardiac function and cardiovascular autonomic control in doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol. 21, 365374. https://doi.org/10.1007/s12012-020-09627-w (2021).

CAS Article Google Scholar

Vargas-Ortiz, K., Prez-Vzquez, V. & Macas-Cervantes, M. H. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112717 (2019).

Article Google Scholar

Mei, Z. et al. Sirtuins in metabolism, DNA repair and cancer. J. Exp. Clin. Cancer Res. CR 35, 182. https://doi.org/10.1186/s13046-016-0461-5 (2016).

CAS Article Google Scholar

Onn, L. et al. SIRT6 is a DNA double-strand break sensor. Elife https://doi.org/10.7554/eLife.51636 (2020).

Article Google Scholar

Meng, F. et al. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. Elife https://doi.org/10.7554/eLife.55828 (2020).

Article Google Scholar

Cash, S. W. et al. Recent physical activity in relation to DNA damage and repair using the comet assay. J. Phys. Act. Health 11, 770776. https://doi.org/10.1123/jpah.2012-0278 (2014).

Article Google Scholar

Zhang, D. Y. & Anderson, A. S. The sympathetic nervous system and heart failure. Cardiol. Clin. 32, 33vii. https://doi.org/10.1016/j.ccl.2013.09.010 (2014).

Article Google Scholar

Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 19741982b. https://doi.org/10.1093/eurheartj/ehv087 (2015).

CAS Article Google Scholar

Ferreira, M. J. & Zanesco, A. Heart rate variability as important approach for assessment autonomic modulation. J. Motriz Revista de Educao Fsica. 22, 38 (2016).

Article Google Scholar

Moguilevski, V., Oliver, J. & McGrath, B. P. Sympathetic regulation in rabbits with heart failure: Experience using power spectral analysis of heart rate variability. Clin. Exp. Pharmacol. Physiol. 22, 475477. https://doi.org/10.1111/j.1440-1681.1995.tb02049.x (1995).

CAS Article Google Scholar

Curigliano, G. et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 31, 171190. https://doi.org/10.1016/j.annonc.2019.10.023 (2020).

CAS Article Google Scholar

Strongman, H. et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 394, 10411054. https://doi.org/10.1016/S0140-6736(19)31674-5 (2019).

Article Google Scholar

Zamorano, J. L. et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 37, 27682801. https://doi.org/10.1093/eurheartj/ehw211 (2016).

Article Google Scholar

Krzesiak, A., Delpech, N., Sebille, S., Cognard, C. & Chatelier, A. Structural, contractile and electrophysiological adaptations of cardiomyocytes to chronic exercise. Adv. Exp. Med. Biol. 999, 7590. https://doi.org/10.1007/978-981-10-4307-9_5 (2017).

CAS Article Google Scholar

Schaun, M. I. et al. Preventive physical training partially preserves heart function and improves cardiac antioxidant responses in rats after myocardial infarction preventive physical training and myocardial infarction in rats. Int. J. Sport Nutr. Exerc. Metab. 27, 197203. https://doi.org/10.1123/ijsnem.2016-0300 (2017).

CAS Article Google Scholar

Penna, C., Alloatti, G. & Crisafulli, A. Mechanisms involved in cardioprotection induced by physical exercise. Antioxid. Redox Signal. 32, 11151134. https://doi.org/10.1089/ars.2019.8009 (2020).

CAS Article Google Scholar

Liu, J.-L., Kulakofsky, J. & Zucker, I. H. Exercise training enhances baroreflex control of heart rate by a vagal mechanism in rabbits with heart failure. 92, 2403-2408. https://doi.org/10.1152/japplphysiol.00039.2002 (2002).

Hojman, P., Gehl, J., Christensen, J. F. & Pedersen, B. K. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 27, 1021. https://doi.org/10.1016/j.cmet.2017.09.015 (2018).

CAS Article Google Scholar

Squires, R. W., Shultz, A. M. & Herrmann, J. Exercise training and cardiovascular health in cancer patients. Curr. Oncol. Rep. 20, 2727. https://doi.org/10.1007/s11912-018-0681-2 (2018).

Article Google Scholar

Gebruers, N. et al. The effect of training interventions on physical performance, quality of life, and fatigue in patients receiving breast cancer treatment: A systematic review. Support Care Cancer 27, 109122. https://doi.org/10.1007/s00520-018-4490-9 (2019).

Article Google Scholar

Ormel, H. L. et al. Predictors of adherence to exercise interventions during and after cancer treatment: A systematic review. Psychooncology 27, 713724. https://doi.org/10.1002/pon.4612 (2018).

CAS Article Google Scholar

Witlox, L. et al. Attendance and compliance with an exercise program during localized breast cancer treatment in a randomized controlled trial: The PACT study. PLoS ONE 14, e0215517. https://doi.org/10.1371/journal.pone.0215517 (2019).

Article Google Scholar

ODPHP, O. o. D. P. a. H. P. Physical Activity Guidelines. (2018).

Bredahl, E. C., Pfannenstiel, K. B., Quinn, C. J., Hayward, R. & Hydock, D. S. Effects of exercise on doxorubicin-induced skeletal muscle dysfunction. Med. Sci. Sports Exerc. 48, 14681473. https://doi.org/10.1249/mss.0000000000000926 (2016).

CAS Article Google Scholar

Murphy, K. T. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am. J. Physiol. Heart Circ. Physiol. 310, H466-477. https://doi.org/10.1152/ajpheart.00720.2015 (2016).

Article Google Scholar

Watson, R. D., Gibbs, C. R. & Lip, G. Y. ABC of heart failure. Clinical features and complications. BMJ 320, 236239. https://doi.org/10.1136/bmj.320.7229.236 (2000).

CAS Article Google Scholar

Chen, J. J., Wu, P.-T., Middlekauff, H. R. & Nguyen, K.-L. Aerobic exercise in anthracycline-induced cardiotoxicity: A systematic review of current evidence and future directions. Am. J. Physiol. Heart Circ. Physiol. 312, H213H222. https://doi.org/10.1152/ajpheart.00646.2016 (2017).

Article Google Scholar

Jordan, J. H. et al. Left ventricular mass change after anthracycline chemotherapy. Circ. Heart Fail. 11, e004560. https://doi.org/10.1161/circheartfailure.117.004560 (2018).

CAS Article Google Scholar

Ferreira de Souza, T. et al. Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC. Cardiovasc. Imaging 11, 10451055. https://doi.org/10.1016/j.jcmg.2018.05.012 (2018).

Article Google Scholar

Tham, E. B. et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: Relationship to exercise capacity, cumulative dose and remodeling. J. Cardiovasc. Magn. Reson. 15, 4848. https://doi.org/10.1186/1532-429X-15-48 (2013).

Article Google Scholar

Schttler, D., Clauss, S., Weckbach, L. T. & Brunner, S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells 8, 1128. https://doi.org/10.3390/cells8101128 (2019).

CAS Article Google Scholar

Sturgeon, K. et al. Concomitant low-dose doxorubicin treatment and exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R685-692. https://doi.org/10.1152/ajpregu.00082.2014 (2014).

CAS Article Google Scholar

Original post:
Preventive aerobic training preserves sympathovagal function and improves DNA repair capacity of peripheral blood mononuclear cells in rats with...

Related Posts