New NIH awards focus on nanopore technology for DNA sequencing

Posted: September 7, 2013 at 4:41 am

Public release date: 6-Sep-2013 [ | E-mail | Share ]

Contact: Steven Benowitz steven.benowitz@nih.gov 301-451-8325 NIH/National Human Genome Research Institute

The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the National Institutes of Health. The grants nearly $17 million to eight research teams are the latest awarded through the National Human Genome Research Institute (NHGRI)'s Advanced DNA Sequencing Technology program, which was launched in 2004. NHGRI is part of NIH.

"Nanopore technology shows great promise, but it is still a new area of science. We have much to learn about how nanopores can work effectively as a DNA sequencing technology, which is why five of the program's eight grants are exploring this approach," said Jeffery A. Schloss, Ph.D., program director for NHGRI's Advanced DNA Sequencing Technology program and director of the Division of Genome Sciences.

Nanopore-based DNA sequencing involves threading single DNA strands through tiny pores. Individual base pairs the chemical letters of DNA are then read one at a time as they pass through the nanopore. The bases are identified by measuring the difference in their effect on current flowing through the pore. For perspective, a human hair is 100,000 nanometers in diameter; a strand of DNA is only 2 nanometers in diameter. Nanopores used in DNA sequencing are 1 to 2 nanometers in diameter.

This technology offers many potential advantages over current DNA sequencing methods, said Dr. Schloss. Such advantages include real-time sequencing of single DNA molecules at low cost and the ability for the same molecule to be reassessed over and over again. Current systems involve isolating DNA and chemically labeling and copying it. DNA has to be broken up, and small segments are sequenced many times. Only the first step of isolating the DNA would be necessary with nanopore technology.

Innovation is crucial in these as well as the other (non-nanopore) studies being funded. For example, one research team eventually hopes to use light to sequence DNA on a cell phone camera chip for under $100.

The new grants are awarded to:

Dr. Aksimentiev and his colleagues plan to use nanopores as sensors. The researchers are studying the effects of combining synthetic nanopores with a light-based technique to control the flow of DNA molecules through the pores. They will use a type of spectroscopy to read the chemical sequence of the DNA.

Dr. Edwards and his colleagues plan to develop innovative molecular biology tools to improve whole-genome sequencing, which entails reading a person's entire genetic blueprint. The researchers hope that better methods of preparing the DNA molecules for sequencing will help scientists identify and link genetic variants to disease and, ultimately, lead to new treatments.

View post:
New NIH awards focus on nanopore technology for DNA sequencing

Related Posts