Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms – Nature.com

Posted: July 27, 2024 at 8:04 pm

Fernandes, P. Use of antibiotic core structures to generate new and useful macrolide antibiotics. In Antibiotics Current Innovations and Future Trends (eds Snchez, S. & Demain, A. L.) (Caister Academic Press, 2015).

Bush, N. G., Diez-Santos, I., Abbott, L. R. & Maxwell, A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules 25, 5662 (2020).

Article CAS PubMed PubMed Central Google Scholar

Agouridas, C. et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 40804100 (1998).

Article CAS PubMed Google Scholar

Seiple, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338345 (2016).

Article CAS PubMed PubMed Central Google Scholar

Pavlovic, D., Fajdetic, A. & Mutak, S. Novel hybrids of 15-membered 8a- and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials. Bioorg. Med. Chem. 18, 85668582 (2010).

Article CAS PubMed Google Scholar

Fan, B. Z. et al. Design, synthesis and structureactivity relationships of novel 15-membered macrolides: quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides. Eur. J. Med. Chem. 193, 112222 (2020).

Article CAS PubMed Google Scholar

Barry, A. L. & Jones, R. N. Comparative in vitro activity of amifloxacin and five other fluoroquinolone antimicrobial agents and preliminary criteria for the disk susceptibility test. Eur. J. Clin. Microbiol. 6, 179182 (1987).

Article CAS PubMed Google Scholar

Yourassowsky, E., Van der Linden, M. P., Crokaert, F. & Glupczynski, Y. In vitro activity of pefloxacin compared to other antibiotics. J. Antimicrob. Chemother. 17, 1928 (1986).

Article CAS PubMed Google Scholar

Dinos, G. P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 174, 29672983 (2017).

Article CAS PubMed PubMed Central Google Scholar

Vazquez-Laslop, N. & Mankin, A. S. How macrolide antibiotics work. Trends Biochem. Sci. 43, 668684 (2018).

Article CAS PubMed PubMed Central Google Scholar

Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87, 451478 (2018).

Article CAS PubMed PubMed Central Google Scholar

Schlunzen, F. et al. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11, 329338 (2003).

Article CAS PubMed Google Scholar

Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA 107, 1715217157 (2010).

Article CAS PubMed PubMed Central Google Scholar

Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl Acad. Sci. USA 107, 1715817163 (2010).

Article CAS PubMed PubMed Central Google Scholar

Svetlov, M. S. et al. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 17, 412420 (2021).

Article CAS PubMed PubMed Central Google Scholar

Beckert, B. et al. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat. Commun. 12, 4466 (2021).

Article CAS PubMed PubMed Central Google Scholar

Tu, D., Blaha, G., Moore, P. B. & Steitz, T. A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257270 (2005).

Article CAS PubMed Google Scholar

Hansen, J. L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117128 (2002).

Article CAS PubMed Google Scholar

Svetlov, M. S. et al. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA 25, 600606 (2019).

Article CAS PubMed PubMed Central Google Scholar

Chen, C. W. et al. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat. Commun. 14, 4196 (2023).

Article CAS PubMed PubMed Central Google Scholar

Jenni, S. & Ban, N. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol. 13, 212219 (2003).

Article CAS PubMed Google Scholar

Kannan, K., Vzquez-Laslop, N. & Mankin, A. S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151, 508520 (2012).

Article CAS PubMed Google Scholar

Davis, A. R., Gohara, D. W. & Yap, M. N. Sequence selectivity of macrolide-induced translational attenuation. Proc. Natl Acad. Sci. USA 111, 1537915384 (2014).

Article CAS PubMed PubMed Central Google Scholar

Kannan, K. et al. The general mode of translation inhibition by macrolide antibiotics. Proc. Natl Acad. Sci. USA 111, 1595815963 (2014).

Article CAS PubMed PubMed Central Google Scholar

Sothiselvam, S. et al. Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size. Cell Rep. 16, 17891799 (2016).

Article CAS PubMed PubMed Central Google Scholar

Almutairi, M. M. et al. Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res. 45, 95739582 (2017).

Article CAS PubMed PubMed Central Google Scholar

Franceschi, F., Kanyo, Z., Sherer, E. C. & Sutcliffe, J. Macrolide resistance from the ribosome perspective. Curr. Drug Targets Infect. Disord. 4, 177191 (2004).

Article CAS PubMed Google Scholar

Versalovic, J. et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40, 477480 (1996).

Article CAS PubMed PubMed Central Google Scholar

Wand, G. & Taylor, D. E. Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob. Agents Chemother. 42, 19521958 (1998).

Article Google Scholar

Shallom, S. J. & Zelazny, A. M. Detection of mixed populations of clarithromycin-susceptible and -resistant Mycobacterium abscessus strains. J. Clin. Microbiol. 60, e0169421 (2022).

Article PubMed Google Scholar

McGuire, J. M. et al. Ilotycin, a new antibiotic. Antibiot. Chemother. (Northfield) 2, 281283 (1952).

CAS PubMed Google Scholar

Kirst, H. A. Introduction to the macrolide antibiotics. In Macrolide Antibiotics (eds Schnfeld, W. & Kirst, H. A.) (Birkhuser Verlag, 2002).

Iacoviello, V. R. & Zinner, S. H. Macrolides: a clinical overview. In Macrolide Antibiotics (eds Parnham, M. J. & Bruinvels, J.) (Birkhuser Verlag, 2002).

Tanikawa, T. et al. Synthesis and antibacterial activity of acylides (3-O-acyl-erythromycin derivatives): a novel class of macrolide antibiotics. J. Med. Chem. 44, 40274030 (2001).

Article CAS PubMed Google Scholar

Liang, J. H. et al. Structureactivity relationships of novel alkylides: 3-O-arylalkyl clarithromycin derivatives with improved antibacterial activities. Eur. J. Med. Chem. 49, 289303 (2012).

Article CAS PubMed Google Scholar

Magee, T. V. et al. Novel 3-O-carbamoyl erythromycin A derivatives (carbamolides) with activity against resistant staphylococcal and streptococcal isolates. Bioorg. Med. Chem. Lett. 23, 17271731 (2013).

Article CAS PubMed Google Scholar

Tang, D. et al. Design, synthesis, and antibacterial activities of novel 3,6-bicyclolide oximes: length optimization and zero carbon linker oximes. Bioorg. Med. Chem. Lett. 18, 50785082 (2008).

Article CAS PubMed Google Scholar

Bryskier, A. & Denis, A. Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within Gram-positive cocci. In Macrolide Antibiotics (eds Schnfeld, W. & Kirst, H. A.) (Birkhuser Verlag, 2002).

Fernandes, P., Martens, E., Bertrand, D. & Pereira, D. The solithromycin journeyit is all in the chemistry. Bioorg. Med. Chem. 24, 64206428 (2016).

Article CAS PubMed Google Scholar

Capobianco, J. O. et al. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44, 15621567 (2000).

Article CAS PubMed PubMed Central Google Scholar

Llano-Sotelo, B. et al. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother. 54, 49614970 (2010).

Article CAS PubMed PubMed Central Google Scholar

Douthwaite, S. Structureactivity relationships of ketolides vs. macrolides. Clin. Microbiol. Infect. 7, 1117 (2001).

Article CAS PubMed Google Scholar

Svetlov, M. S., Cohen, S., Alsuhebany, N., Vazquez-Laslop, N. & Mankin, A. S. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria. Proc. Natl Acad. Sci. USA 117, 19711975 (2020).

Article CAS PubMed PubMed Central Google Scholar

Ma, C. X. et al. Design, synthesis and structureactivity relationships of novel macrolones: hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens. Eur. J. Med. Chem. 169, 120 (2019).

Article PubMed Google Scholar

Liu, X. P. et al. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides. Bioorg. Med. Chem. Lett. 68, 128761 (2022).

Article CAS PubMed Google Scholar

Hutinec, A. et al. Novel 8a-aza-8a-homoerythromycin4-(3-substituted-amino)propionates with broad spectrum antibacterial activity. Bioorg. Med. Chem. Lett. 20, 32443249 (2010).

Article CAS PubMed Google Scholar

Drlica, K., Malik, M., Kerns, R. J. & Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52, 385392 (2008).

Article CAS PubMed Google Scholar

Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 15651574 (2014).

Article CAS PubMed Google Scholar

Miotto, P., Cirillo, D. M. & Migliori, G. B. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 147, 11351143 (2015).

Article PubMed Google Scholar

Machalek, D. A. et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect. Dis. 20, 13021314 (2020).

Article CAS PubMed Google Scholar

Lungu, I. A., Moldovan, O. L., Biris, V. & Rusu, A. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics 14, 1749 (2022).

Article CAS PubMed PubMed Central Google Scholar

Pavlovic, D. & Mutak, S. Discovery of 4-ether linked azithromycinquinolone hybrid series: influence of the central linker on the antibacterial activity. ACS Med. Chem. Lett. 2, 331336 (2011).

Article CAS PubMed PubMed Central Google Scholar

View post:
Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms - Nature.com

Related Posts