DNA damage resulting in multiple broken chromosomes
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in as many as 1 million individual molecular lesions per cell per day.[1] Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages (interstrand crosslinks or ICLs).[2][3] This can eventually lead to malignant tumors, or cancer as per the two hit hypothesis.
The rate of DNA repair is dependent on many factors, including the cell type, the age of the cell, and the extracellular environment. A cell that has accumulated a large amount of DNA damage, or one that no longer effectively repairs damage incurred to its DNA, can enter one of three possible states:
The DNA repair ability of a cell is vital to the integrity of its genome and thus to the normal functionality of that organism. Many genes that were initially shown to influence life span have turned out to be involved in DNA damage repair and protection.[4]
The 2015 Nobel Prize in Chemistry was awarded to Tomas Lindahl, Paul Modrich, and Aziz Sancar for their work on the molecular mechanisms of DNA repair processes.[5][6]
DNA damage, due to environmental factors and normal metabolic processes inside the cell, occurs at a rate of 10,000 to 1,000,000 molecular lesions per cell per day.[1] While this constitutes only 0.000165% of the human genome's approximately 6 billion bases (3 billion base pairs), unrepaired lesions in critical genes (such as tumor suppressor genes) can impede a cell's ability to carry out its function and appreciably increase the likelihood of tumor formation and contribute to tumour heterogeneity.
The vast majority of DNA damage affects the primary structure of the double helix; that is, the bases themselves are chemically modified. These modifications can in turn disrupt the molecules' regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. Unlike proteins and RNA, DNA usually lacks tertiary structure and therefore damage or disturbance does not occur at that level. DNA is, however, supercoiled and wound around "packaging" proteins called histones (in eukaryotes), and both superstructures are vulnerable to the effects of DNA damage.
DNA damage can be subdivided into two main types:
The replication of damaged DNA before cell division can lead to the incorporation of wrong bases opposite damaged ones. Daughter cells that inherit these wrong bases carry mutations from which the original DNA sequence is unrecoverable (except in the rare case of a back mutation, for example, through gene conversion).
There are several types of damage to DNA due to endogenous cellular processes:
Damage caused by exogenous agents comes in many forms. Some examples are:
UV damage, alkylation/methylation, X-ray damage and oxidative damage are examples of induced damage. Spontaneous damage can include the loss of a base, deamination, sugar ring puckering and tautomeric shift.
In human cells, and eukaryotic cells in general, DNA is found in two cellular locations inside the nucleus and inside the mitochondria. Nuclear DNA (nDNA) exists as chromatin during non-replicative stages of the cell cycle and is condensed into aggregate structures known as chromosomes during cell division. In either state the DNA is highly compacted and wound up around bead-like proteins called histones. Whenever a cell needs to express the genetic information encoded in its nDNA the required chromosomal region is unravelled, genes located therein are expressed, and then the region is condensed back to its resting conformation. Mitochondrial DNA (mtDNA) is located inside mitochondria organelles, exists in multiple copies, and is also tightly associated with a number of proteins to form a complex known as the nucleoid. Inside mitochondria, reactive oxygen species (ROS), or free radicals, byproducts of the constant production of adenosine triphosphate (ATP) via oxidative phosphorylation, create a highly oxidative environment that is known to damage mtDNA. A critical enzyme in counteracting the toxicity of these species is superoxide dismutase, which is present in both the mitochondria and cytoplasm of eukaryotic cells.
Senescence, an irreversible process in which the cell no longer divides, is a protective response to the shortening of the chromosome ends. The telomeres are long regions of repetitive noncoding DNA that cap chromosomes and undergo partial degradation each time a cell undergoes division (see Hayflick limit).[10] In contrast, quiescence is a reversible state of cellular dormancy that is unrelated to genome damage (see cell cycle). Senescence in cells may serve as a functional alternative to apoptosis in cases where the physical presence of a cell for spatial reasons is required by the organism,[11] which serves as a "last resort" mechanism to prevent a cell with damaged DNA from replicating inappropriately in the absence of pro-growth cellular signaling. Unregulated cell division can lead to the formation of a tumor (see cancer), which is potentially lethal to an organism. Therefore, the induction of senescence and apoptosis is considered to be part of a strategy of protection against cancer.[12]
It is important to distinguish between DNA damage and mutation, the two major types of error in DNA. DNA damages and mutation are fundamentally different. Damages are physical abnormalities in the DNA, such as single- and double-strand breaks, 8-hydroxydeoxyguanosine residues, and polycyclic aromatic hydrocarbon adducts. DNA damages can be recognized by enzymes, and, thus, they can be correctly repaired if redundant information, such as the undamaged sequence in the complementary DNA strand or in a homologous chromosome, is available for copying. If a cell retains DNA damage, transcription of a gene can be prevented, and, thus, translation into a protein will also be blocked. Replication may also be blocked or the cell may die.
In contrast to DNA damage, a mutation is a change in the base sequence of the DNA. A mutation cannot be recognized by enzymes once the base change is present in both DNA strands, and, thus, a mutation cannot be repaired. At the cellular level, mutations can cause alterations in protein function and regulation. Mutations are replicated when the cell replicates. In a population of cells, mutant cells will increase or decrease in frequency according to the effects of the mutation on the ability of the cell to survive and reproduce. Although distinctly different from each other, DNA damages and mutations are related because DNA damages often cause errors of DNA synthesis during replication or repair; these errors are a major source of mutation.
Given these properties of DNA damage and mutation, it can be seen that DNA damages are a special problem in non-dividing or slowly dividing cells, where unrepaired damages will tend to accumulate over time. On the other hand, in rapidly dividing cells, unrepaired DNA damages that do not kill the cell by blocking replication will tend to cause replication errors and thus mutation. The great majority of mutations that are not neutral in their effect are deleterious to a cell's survival. Thus, in a population of cells composing a tissue with replicating cells, mutant cells will tend to be lost. However, infrequent mutations that provide a survival advantage will tend to clonally expand at the expense of neighboring cells in the tissue. This advantage to the cell is disadvantageous to the whole organism, because such mutant cells can give rise to cancer. Thus, DNA damages in frequently dividing cells, because they give rise to mutations, are a prominent cause of cancer. In contrast, DNA damages in infrequently dividing cells are likely a prominent cause of aging.[13]
Single-strand and double-strand DNA damage
Cells cannot function if DNA damage corrupts the integrity and accessibility of essential information in the genome (but cells remain superficially functional when non-essential genes are missing or damaged). Depending on the type of damage inflicted on the DNA's double helical structure, a variety of repair strategies have evolved to restore lost information. If possible, cells use the unmodified complementary strand of the DNA or the sister chromatid as a template to recover the original information. Without access to a template, cells use an error-prone recovery mechanism known as translesion synthesis as a last resort.
Damage to DNA alters the spatial configuration of the helix, and such alterations can be detected by the cell. Once damage is localized, specific DNA repair molecules bind at or near the site of damage, inducing other molecules to bind and form a complex that enables the actual repair to take place.
Cells are known to eliminate three types of damage to their DNA by chemically reversing it. These mechanisms do not require a template, since the types of damage they counteract can occur in only one of the four bases. Such direct reversal mechanisms are specific to the type of damage incurred and do not involve breakage of the phosphodiester backbone. The formation of pyrimidine dimers upon irradiation with UV light results in an abnormal covalent bond between adjacent pyrimidine bases. The photoreactivation process directly reverses this damage by the action of the enzyme photolyase, whose activation is obligately dependent on energy absorbed from blue/UV light (300500nm wavelength) to promote catalysis.[14] Photolyase, an old enzyme present in bacteria, fungi, and most animals no longer functions in humans,[15] who instead use nucleotide excision repair to repair damage from UV irradiation. Another type of damage, methylation of guanine bases, is directly reversed by the protein methyl guanine methyl transferase (MGMT), the bacterial equivalent of which is called ogt. This is an expensive process because each MGMT molecule can be used only once; that is, the reaction is stoichiometric rather than catalytic.[16] A generalized response to methylating agents in bacteria is known as the adaptive response and confers a level of resistance to alkylating agents upon sustained exposure by upregulation of alkylation repair enzymes.[17] The third type of DNA damage reversed by cells is certain methylation of the bases cytosine and adenine.
When only one of the two strands of a double helix has a defect, the other strand can be used as a template to guide the correction of the damaged strand. In order to repair damage to one of the two paired molecules of DNA, there exist a number of excision repair mechanisms that remove the damaged nucleotide and replace it with an undamaged nucleotide complementary to that found in the undamaged DNA strand.[16]
Double-strand breaks, in which both strands in the double helix are severed, are particularly hazardous to the cell because they can lead to genome rearrangements. Three mechanisms exist to repair double-strand breaks (DSBs): non-homologous end joining (NHEJ), microhomology-mediated end joining (MMEJ), and homologous recombination.[16] PVN Acharya noted that double-strand breaks and a "cross-linkage joining both strands at the same point is irreparable because neither strand can then serve as a template for repair. The cell will die in the next mitosis or in some rare instances, mutate."[2][3]
In NHEJ, DNA Ligase IV, a specialized DNA ligase that forms a complex with the cofactor XRCC4, directly joins the two ends.[21] To guide accurate repair, NHEJ relies on short homologous sequences called microhomologies present on the single-stranded tails of the DNA ends to be joined. If these overhangs are compatible, repair is usually accurate.[22][23][24][25] NHEJ can also introduce mutations during repair. Loss of damaged nucleotides at the break site can lead to deletions, and joining of nonmatching termini forms insertions or translocations. NHEJ is especially important before the cell has replicated its DNA, since there is no template available for repair by homologous recombination. There are "backup" NHEJ pathways in higher eukaryotes.[26] Besides its role as a genome caretaker, NHEJ is required for joining hairpin-capped double-strand breaks induced during V(D)J recombination, the process that generates diversity in B-cell and T-cell receptors in the vertebrate immune system.[27]
MMEJ starts with short-range end resection by MRE11 nuclease on either side of a double-strand break to reveal microhomology regions.[28] In further steps,[29] PARP1 is required and may be an early step in MMEJ. There is pairing of microhomology regions followed by recruitment of flap structure-specific endonuclease 1 (FEN1) to remove overhanging flaps. This is followed by recruitment of XRCC1LIG3 to the site for ligating the DNA ends, leading to an intact DNA.
DNA double strand breaks in mammalian cells are primarily repaired by homologous recombination (HR) and non-homologous end joining (NHEJ).[30] In an in vitro system, MMEJ occurred in mammalian cells at the levels of 1020% of HR when both HR and NHEJ mechanisms were also available.[28] MMEJ is always accompanied by a deletion, so that MMEJ is a mutagenic pathway for DNA repair.[31]
Homologous recombination requires the presence of an identical or nearly identical sequence to be used as a template for repair of the break. The enzymatic machinery responsible for this repair process is nearly identical to the machinery responsible for chromosomal crossover during meiosis. This pathway allows a damaged chromosome to be repaired using a sister chromatid (available in G2 after DNA replication) or a homologous chromosome as a template. DSBs caused by the replication machinery attempting to synthesize across a single-strand break or unrepaired lesion cause collapse of the replication fork and are typically repaired by recombination.
Topoisomerases introduce both single- and double-strand breaks in the course of changing the DNA's state of supercoiling, which is especially common in regions near an open replication fork. Such breaks are not considered DNA damage because they are a natural intermediate in the topoisomerase biochemical mechanism and are immediately repaired by the enzymes that created them.
A team of French researchers bombarded Deinococcus radiodurans to study the mechanism of double-strand break DNA repair in that bacterium. At least two copies of the genome, with random DNA breaks, can form DNA fragments through annealing. Partially overlapping fragments are then used for synthesis of homologous regions through a moving D-loop that can continue extension until they find complementary partner strands. In the final step there is crossover by means of RecA-dependent homologous recombination.[32]
Translesion synthesis (TLS) is a DNA damage tolerance process that allows the DNA replication machinery to replicate past DNA lesions such as thymine dimers or AP sites.[33] It involves switching out regular DNA polymerases for specialized translesion polymerases (i.e. DNA polymerase IV or V, from the Y Polymerase family), often with larger active sites that can facilitate the insertion of bases opposite damaged nucleotides. The polymerase switching is thought to be mediated by, among other factors, the post-translational modification of the replication processivity factor PCNA. Translesion synthesis polymerases often have low fidelity (high propensity to insert wrong bases) on undamaged templates relative to regular polymerases. However, many are extremely efficient at inserting correct bases opposite specific types of damage. For example, Pol mediates error-free bypass of lesions induced by UV irradiation, whereas Pol introduces mutations at these sites. Pol is known to add the first adenine across the T^T photodimer using Watson-Crick base pairing and the second adenine will be added in its syn conformation using Hoogsteen base pairing. From a cellular perspective, risking the introduction of point mutations during translesion synthesis may be preferable to resorting to more drastic mechanisms of DNA repair, which may cause gross chromosomal aberrations or cell death. In short, the process involves specialized polymerases either bypassing or repairing lesions at locations of stalled DNA replication. For example, Human DNA polymerase eta can bypass complex DNA lesions like guanine-thymine intra-strand crosslink, G[8,5-Me]T, although can cause targeted and semi-targeted mutations.[34] Paromita Raychaudhury and Ashis Basu[35] studied the toxicity and mutagenesis of the same lesion in Escherichia coli by replicating a G[8,5-Me]T-modified plasmid in E. coli with specific DNA polymerase knockouts. Viability was very low in a strain lacking pol II, pol IV, and pol V, the three SOS-inducible DNA polymerases, indicating that translesion synthesis is conducted primarily by these specialized DNA polymerases. A bypass platform is provided to these polymerases by Proliferating cell nuclear antigen (PCNA). Under normal circumstances, PCNA bound to polymerases replicates the DNA. At a site of lesion, PCNA is ubiquitinated, or modified, by the RAD6/RAD18 proteins to provide a platform for the specialized polymerases to bypass the lesion and resume DNA replication.[36][37] After translesion synthesis, extension is required. This extension can be carried out by a replicative polymerase if the TLS is error-free, as in the case of Pol , yet if TLS results in a mismatch, a specialized polymerase is needed to extend it; Pol . Pol is unique in that it can extend terminal mismatches, whereas more processive polymerases cannot. So when a lesion is encountered, the replication fork will stall, PCNA will switch from a processive polymerase to a TLS polymerase such as Pol to fix the lesion, then PCNA may switch to Pol to extend the mismatch, and last PCNA will switch to the processive polymerase to continue replication.
Cells exposed to ionizing radiation, ultraviolet light or chemicals are prone to acquire multiple sites of bulky DNA lesions and double-strand breaks. Moreover, DNA damaging agents can damage other biomolecules such as proteins, carbohydrates, lipids, and RNA. The accumulation of damage, to be specific, double-strand breaks or adducts stalling the replication forks, are among known stimulation signals for a global response to DNA damage.[38] The global response to damage is an act directed toward the cells' own preservation and triggers multiple pathways of macromolecular repair, lesion bypass, tolerance, or apoptosis. The common features of global response are induction of multiple genes, cell cycle arrest, and inhibition of cell division.
After DNA damage, cell cycle checkpoints are activated. Checkpoint activation pauses the cell cycle and gives the cell time to repair the damage before continuing to divide. DNA damage checkpoints occur at the G1/S and G2/M boundaries. An intra-S checkpoint also exists. Checkpoint activation is controlled by two master kinases, ATM and ATR. ATM responds to DNA double-strand breaks and disruptions in chromatin structure,[39] whereas ATR primarily responds to stalled replication forks. These kinases phosphorylate downstream targets in a signal transduction cascade, eventually leading to cell cycle arrest. A class of checkpoint mediator proteins including BRCA1, MDC1, and 53BP1 has also been identified.[40] These proteins seem to be required for transmitting the checkpoint activation signal to downstream proteins.
DNA damage checkpoint is a signal transduction pathway that blocks cell cycle progression in G1, G2 and metaphase and slows down the rate of S phase progression when DNA is damaged. It leads to a pause in cell cycle allowing the cell time to repair the damage before continuing to divide.
Checkpoint Proteins can be separated into four groups: phosphatidylinositol 3-kinase (PI3K)-like protein kinase, proliferating cell nuclear antigen (PCNA)-like group, two serine/threonine(S/T) kinases and their adaptors. Central to all DNA damage induced checkpoints responses is a pair of large protein kinases belonging to the first group of PI3K-like protein kinases-the ATM (Ataxia telangiectasia mutated) and ATR (Ataxia- and Rad-related) kinases, whose sequence and functions have been well conserved in evolution. All DNA damage response requires either ATM or ATR because they have the ability to bind to the chromosomes at the site of DNA damage, together with accessory proteins that are platforms on which DNA damage response components and DNA repair complexes can be assembled.
An important downstream target of ATM and ATR is p53, as it is required for inducing apoptosis following DNA damage.[41] The cyclin-dependent kinase inhibitor p21 is induced by both p53-dependent and p53-independent mechanisms and can arrest the cell cycle at the G1/S and G2/M checkpoints by deactivating cyclin/cyclin-dependent kinase complexes.[42]
The SOS response is the changes in gene expression in Escherichia coli and other bacteria in response to extensive DNA damage. The prokaryotic SOS system is regulated by two key proteins: LexA and RecA. The LexA homodimer is a transcriptional repressor that binds to operator sequences commonly referred to as SOS boxes. In Escherichia coli it is known that LexA regulates transcription of approximately 48 genes including the lexA and recA genes.[43] The SOS response is known to be widespread in the Bacteria domain, but it is mostly absent in some bacterial phyla, like the Spirochetes.[44] The most common cellular signals activating the SOS response are regions of single-stranded DNA (ssDNA), arising from stalled replication forks or double-strand breaks, which are processed by DNA helicase to separate the two DNA strands.[38] In the initiation step, RecA protein binds to ssDNA in an ATP hydrolysis driven reaction creating RecAssDNA filaments. RecAssDNA filaments activate LexA autoprotease activity, which ultimately leads to cleavage of LexA dimer and subsequent LexA degradation. The loss of LexA repressor induces transcription of the SOS genes and allows for further signal induction, inhibition of cell division and an increase in levels of proteins responsible for damage processing.
In Escherichia coli, SOS boxes are 20-nucleotide long sequences near promoters with palindromic structure and a high degree of sequence conservation. In other classes and phyla, the sequence of SOS boxes varies considerably, with different length and composition, but it is always highly conserved and one of the strongest short signals in the genome.[44] The high information content of SOS boxes permits differential binding of LexA to different promoters and allows for timing of the SOS response. The lesion repair genes are induced at the beginning of SOS response. The error-prone translesion polymerases, for example, UmuCD'2 (also called DNA polymerase V), are induced later on as a last resort.[45] Once the DNA damage is repaired or bypassed using polymerases or through recombination, the amount of single-stranded DNA in cells is decreased, lowering the amounts of RecA filaments decreases cleavage activity of LexA homodimer, which then binds to the SOS boxes near promoters and restores normal gene expression.
Eukaryotic cells exposed to DNA damaging agents also activate important defensive pathways by inducing multiple proteins involved in DNA repair, cell cycle checkpoint control, protein trafficking and degradation. Such genome wide transcriptional response is very complex and tightly regulated, thus allowing coordinated global response to damage. Exposure of yeast Saccharomyces cerevisiae to DNA damaging agents results in overlapping but distinct transcriptional profiles. Similarities to environmental shock response indicates that a general global stress response pathway exist at the level of transcriptional activation. In contrast, different human cell types respond to damage differently indicating an absence of a common global response. The probable explanation for this difference between yeast and human cells may be in the heterogeneity of mammalian cells. In an animal different types of cells are distributed among different organs that have evolved different sensitivities to DNA damage.[46]
In general global response to DNA damage involves expression of multiple genes responsible for postreplication repair, homologous recombination, nucleotide excision repair, DNA damage checkpoint, global transcriptional activation, genes controlling mRNA decay, and many others. A large amount of damage to a cell leaves it with an important decision: undergo apoptosis and die, or survive at the cost of living with a modified genome. An increase in tolerance to damage can lead to an increased rate of survival that will allow a greater accumulation of mutations. Yeast Rev1 and human polymerase are members of [Y family translesion DNA polymerases present during global response to DNA damage and are responsible for enhanced mutagenesis during a global response to DNA damage in eukaryotes.[38]
DNA repair rate is an important determinant of cell pathology
Experimental animals with genetic deficiencies in DNA repair often show decreased life span and increased cancer incidence.[13] For example, mice deficient in the dominant NHEJ pathway and in telomere maintenance mechanisms get lymphoma and infections more often, and, as a consequence, have shorter lifespans than wild-type mice.[47] In similar manner, mice deficient in a key repair and transcription protein that unwinds DNA helices have premature onset of aging-related diseases and consequent shortening of lifespan.[48] However, not every DNA repair deficiency creates exactly the predicted effects; mice deficient in the NER pathway exhibited shortened life span without correspondingly higher rates of mutation.[49]
If the rate of DNA damage exceeds the capacity of the cell to repair it, the accumulation of errors can overwhelm the cell and result in early senescence, apoptosis, or cancer. Inherited diseases associated with faulty DNA repair functioning result in premature aging,[13] increased sensitivity to carcinogens, and correspondingly increased cancer risk (see below). On the other hand, organisms with enhanced DNA repair systems, such as Deinococcus radiodurans, the most radiation-resistant known organism, exhibit remarkable resistance to the double-strand break-inducing effects of radioactivity, likely due to enhanced efficiency of DNA repair and especially NHEJ.[50]
Most life span influencing genes affect the rate of DNA damage
A number of individual genes have been identified as influencing variations in life span within a population of organisms. The effects of these genes is strongly dependent on the environment, in particular, on the organism's diet. Caloric restriction reproducibly results in extended lifespan in a variety of organisms, likely via nutrient sensing pathways and decreased metabolic rate. The molecular mechanisms by which such restriction results in lengthened lifespan are as yet unclear (see[51] for some discussion); however, the behavior of many genes known to be involved in DNA repair is altered under conditions of caloric restriction.
For example, increasing the gene dosage of the gene SIR-2, which regulates DNA packaging in the nematode worm Caenorhabditis elegans, can significantly extend lifespan.[52] The mammalian homolog of SIR-2 is known to induce downstream DNA repair factors involved in NHEJ, an activity that is especially promoted under conditions of caloric restriction.[53] Caloric restriction has been closely linked to the rate of base excision repair in the nuclear DNA of rodents,[54] although similar effects have not been observed in mitochondrial DNA.[55]
The C. elegans gene AGE-1, an upstream effector of DNA repair pathways, confers dramatically extended life span under free-feeding conditions but leads to a decrease in reproductive fitness under conditions of caloric restriction.[56] This observation supports the pleiotropy theory of the biological origins of aging, which suggests that genes conferring a large survival advantage early in life will be selected for even if they carry a corresponding disadvantage late in life.
Defects in the NER mechanism are responsible for several genetic disorders, including:
Mental retardation often accompanies the latter two disorders, suggesting increased vulnerability of developmental neurons.
Other DNA repair disorders include:
All of the above diseases are often called "segmental progerias" ("accelerated aging diseases") because their victims appear elderly and suffer from aging-related diseases at an abnormally young age, while not manifesting all the symptoms of old age.
Other diseases associated with reduced DNA repair function include Fanconi anemia, hereditary breast cancer and hereditary colon cancer.
Because of inherent limitations in the DNA repair mechanisms, if humans lived long enough, they would all eventually develop cancer.[57][58] There are at least 34 Inherited human DNA repair gene mutations that increase cancer risk. Many of these mutations cause DNA repair to be less effective than normal. In particular, Hereditary nonpolyposis colorectal cancer (HNPCC) is strongly associated with specific mutations in the DNA mismatch repair pathway. BRCA1 and BRCA2, two famous genes whose mutations confer a hugely increased risk of breast cancer on carriers, are both associated with a large number of DNA repair pathways, especially NHEJ and homologous recombination.
Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side-effect is that other non-cancerous but rapidly dividing cells such as progenitor cells in the gut, skin, and hematopoietic system are also affected. Modern cancer treatments attempt to localize the DNA damage to cells and tissues only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body).
Classically, cancer has been viewed as a set of diseases that are driven by progressive genetic abnormalities that include mutations in tumour-suppressor genes and oncogenes, and chromosomal aberrations. However, it has become apparent that cancer is also driven by epigenetic alterations.[59]
Epigenetic alterations refer to functionally relevant modifications to the genome that do not involve a change in the nucleotide sequence. Examples of such modifications are changes in DNA methylation (hypermethylation and hypomethylation) and histone modification,[60] changes in chromosomal architecture (caused by inappropriate expression of proteins such as HMGA2 or HMGA1)[61] and changes caused by microRNAs. Each of these epigenetic alterations serves to regulate gene expression without altering the underlying DNA sequence. These changes usually remain through cell divisions, last for multiple cell generations, and can be considered to be epimutations (equivalent to mutations).
While large numbers of epigenetic alterations are found in cancers, the epigenetic alterations in DNA repair genes, causing reduced expression of DNA repair proteins, appear to be particularly important. Such alterations are thought to occur early in progression to cancer and to be a likely cause of the genetic instability characteristic of cancers.[62][63][64][65]
Reduced expression of DNA repair genes causes deficient DNA repair. When DNA repair is deficient DNA damages remain in cells at a higher than usual level and these excess damages cause increased frequencies of mutation or epimutation. Mutation rates increase substantially in cells defective in DNA mismatch repair[66][67] or in homologous recombinational repair (HRR).[68] Chromosomal rearrangements and aneuploidy also increase in HRR defective cells.[69]
Higher levels of DNA damage not only cause increased mutation, but also cause increased epimutation. During repair of DNA double strand breaks, or repair of other DNA damages, incompletely cleared sites of repair can cause epigenetic gene silencing.[70][71]
Deficient expression of DNA repair proteins due to an inherited mutation can cause increased risk of cancer. Individuals with an inherited impairment in any of 34 DNA repair genes (see article DNA repair-deficiency disorder) have an increased risk of cancer, with some defects causing up to a 100% lifetime chance of cancer (e.g. p53 mutations).[72] However, such germline mutations (which cause highly penetrant cancer syndromes) are the cause of only about 1 percent of cancers.[73]
Deficiencies in DNA repair enzymes are occasionally caused by a newly arising somatic mutation in a DNA repair gene, but are much more frequently caused by epigenetic alterations that reduce or silence expression of DNA repair genes. For example, when 113 colorectal cancers were examined in sequence, only four had a missense mutation in the DNA repair gene MGMT, while the majority had reduced MGMT expression due to methylation of the MGMT promoter region (an epigenetic alteration).[74] Five different studies found that between 40% and 90% of colorectal cancers have reduced MGMT expression due to methylation of the MGMT promoter region.[75][76][77][78][79]
Similarly, out of 119 cases of mismatch repair-deficient colorectal cancers that lacked DNA repair gene PMS2 expression, PMS2 was deficient in 6 due to mutations in the PMS2 gene, while in 103 cases PMS2 expression was deficient because its pairing partner MLH1 was repressed due to promoter methylation (PMS2 protein is unstable in the absence of MLH1).[80] In the other 10 cases, loss of PMS2 expression was likely due to epigenetic overexpression of the microRNA, miR-155, which down-regulates MLH1.[81]
In further examples (tabulated in Table 4 of this reference[82]), epigenetic defects were found at frequencies of between 13%-100% for the DNA repair genes BRCA1, WRN, FANCB, FANCF, MGMT, MLH1, MSH2, MSH4, ERCC1, XPF, NEIL1 and ATM. These epigenetic defects occurred in various cancers (e.g. breast, ovarian, colorectal and head and neck). Two or three deficiencies in the expression of ERCC1, XPF or PMS2 occur simultaneously in the majority of the 49 colon cancers evaluated by Facista et al.[83]
The chart in this section shows some frequent DNA damaging agents, examples of DNA lesions they cause, and the pathways that deal with these DNA damages. At least 169 enzymes are either directly employed in DNA repair or influence DNA repair processes.[84] Of these, 83 are directly employed in repairing the 5 types of DNA damages illustrated in the chart.
Some of the more well studied genes central to these repair processes are shown in the chart. The gene designations shown in red, gray or cyan indicate genes frequently epigenetically altered in various types of cancers. Wikipedia articles on each of the genes high-lighted by red, gray or cyan describe the epigenetic alteration(s) and the cancer(s) in which these epimutations are found. Two review articles,[82][85] and two broad experimental survey articles[86][87] also document most of these epigenetic DNA repair deficiencies in cancers.
Red-highlighted genes are frequently reduced or silenced by epigenetic mechanisms in various cancers. When these genes have low or absent expression, DNA damages can accumulate. Replication errors past these damages (see translesion synthesis) can lead to increased mutations and, ultimately, cancer. Epigenetic repression of DNA repair genes in accurate DNA repair pathways appear to be central to carcinogenesis.
The two gray-highlighted genes RAD51 and BRCA2, are required for homologous recombinational repair. They are sometimes epigenetically over-expressed and sometimes under-expressed in certain cancers. As indicated in the Wikipedia articles on RAD51 and BRCA2, such cancers ordinarily have epigenetic deficiencies in other DNA repair genes. These repair deficiencies would likely cause increased unrepaired DNA damages. The over-expression of RAD51 and BRCA2 seen in these cancers may reflect selective pressures for compensatory RAD51 or BRCA2 over-expression and increased homologous recombinational repair to at least partially deal with such excess DNA damages. In those cases where RAD51 or BRCA2 are under-expressed, this would itself lead to increased unrepaired DNA damages. Replication errors past these damages (see translesion synthesis) could cause increased mutations and cancer, so that under-expression of RAD51 or BRCA2 would be carcinogenic in itself.
Cyan-highlighted genes are in the microhomology-mediated end joining (MMEJ) pathway and are up-regulated in cancer. MMEJ is an additional error-prone inaccurate repair pathway for double-strand breaks. In MMEJ repair of a double-strand break, an homology of 5-25 complementary base pairs between both paired strands is sufficient to align the strands, but mismatched ends (flaps) are usually present. MMEJ removes the extra nucleotides (flaps) where strands are joined, and then ligates the strands to create an intact DNA double helix. MMEJ almost always involves at least a small deletion, so that it is a mutagenic pathway.[88]FEN1, the flap endonuclease in MMEJ, is epigenetically increased by promoter hypomethylation and is over-expressed in the majority of cancers of the breast,[89] prostate,[90] stomach,[91][92] neuroblastomas,[93] pancreas,[94] and lung.[95] PARP1 is also over-expressed when its promoter region ETS site is epigenetically hypomethylated, and this contributes to progression to endometrial cancer,[96] BRCA-mutated ovarian cancer,[97] and BRCA-mutated serous ovarian cancer.[98] Other genes in the MMEJ pathway are also over-expressed in a number of cancers (see MMEJ for summary), and are also shown in cyan.
The basic processes of DNA repair are highly conserved among both prokaryotes and eukaryotes and even among bacteriophage (viruses that infect bacteria); however, more complex organisms with more complex genomes have correspondingly more complex repair mechanisms.[99] The ability of a large number of protein structural motifs to catalyze relevant chemical reactions has played a significant role in the elaboration of repair mechanisms during evolution. For an extremely detailed review of hypotheses relating to the evolution of DNA repair, see.[100]
The fossil record indicates that single-cell life began to proliferate on the planet at some point during the Precambrian period, although exactly when recognizably modern life first emerged is unclear. Nucleic acids became the sole and universal means of encoding genetic information, requiring DNA repair mechanisms that in their basic form have been inherited by all extant life forms from their common ancestor. The emergence of Earth's oxygen-rich atmosphere (known as the "oxygen catastrophe") due to photosynthetic organisms, as well as the presence of potentially damaging free radicals in the cell due to oxidative phosphorylation, necessitated the evolution of DNA repair mechanisms that act specifically to counter the types of damage induced by oxidative stress.
On some occasions, DNA damage is not repaired, or is repaired by an error-prone mechanism that results in a change from the original sequence. When this occurs, mutations may propagate into the genomes of the cell's progeny. Should such an event occur in a germ line cell that will eventually produce a gamete, the mutation has the potential to be passed on to the organism's offspring. The rate of evolution in a particular species (or, in a particular gene) is a function of the rate of mutation. As a consequence, the rate and accuracy of DNA repair mechanisms have an influence over the process of evolutionary change.[101] Since the normal adaptation of populations of organisms to changing circumstances (for instance the adaptation of the beaks of a population of finches to the changing presence of hard seeds or insects) proceeds by gene regulation and the recombination and selection of gene variations alleles and not by passing on irreparable DNA damages to the offspring,[102] DNA damage protection and repair does not influence the rate of adaptation by gene regulation and by recombination and selection of alleles. On the other hand, DNA damage repair and protection does influence the rate of accumulation of irreparable, advantageous, code expanding, inheritable mutations, and slows down the evolutionary mechanism for expansion of the genome of organisms with new functionalities. The tension between evolvability and mutation repair and protection needs further investigation.
A technology named clustered regularly interspaced short palindromic repeat shortened to CRISPR-Cas9 was discovered in 2012. The new technology allows anyone with molecular biology training to alter the genes of any species with precision.[103]
Read the original:
DNA repair - Wikipedia, the free encyclopedia
- Discovering the mysteries of human DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Scientists go deeper into DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Instant Egghead - Genes vs. DNA vs. Chromosomes - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA Calls Out Lineup Of Rappers For Future Battles - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- What is DNA? - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Turn Your DNA Into Fine Art, BMW Zagato Roadster - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA - OFFICIAL URLTV SUMMER MADNESS 2 RECAP! - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- "Binary DNA" - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- 16x9 - DNA Prophecies: Code reveals your future - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Gilbert Gottfried - Space DNA, Sexy Weight Loss, Badonkadonk Booty - Gilbert Gets It - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Animated Health Video Production | DNA Services of America - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Michael Tsarion ~ Mayans ~ 2012 ~ DNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Mini-drones to take your DNA? - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- C2CAM - DNA Research - 07-09-2012 - Coast To Coast AM - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Inside The DNA Of MDNA - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- KOTD - Rap Battle - DNA vs Eurgh - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Starchild DNA Showing "Wright" Stuff - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- Chrome Cats - DNA of a Winner(Official Video) - Video [Last Updated On: September 7th, 2012] [Originally Added On: September 7th, 2012]
- DNA leads to arrest in 1980 murder of Oxnard girl [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- 'Junk' DNA: Not So Useless After All [Last Updated On: September 8th, 2012] [Originally Added On: September 8th, 2012]
- Decoding Human DNA [Last Updated On: September 9th, 2012] [Originally Added On: September 9th, 2012]
- Planet of the Apes: What is that big hunk of 'junk' DNA up to ? [Last Updated On: September 10th, 2012] [Originally Added On: September 10th, 2012]
- Genetics Breakthrough Changes Thinking About DNA [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- 'Junk DNA' and the mystery of mankind's missing genes [Last Updated On: September 11th, 2012] [Originally Added On: September 11th, 2012]
- Real-time observation of single DNA molecule repair [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- Court hears DNA findings in child sex case [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- 2012 International Symposium on Human Identification Features Emerging and Best Practice Forensic DNA Techniques ... [Last Updated On: September 12th, 2012] [Originally Added On: September 12th, 2012]
- DNA could help ID a king [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- DNA with a Twist [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- Three reasons to like junk DNA [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- LBNL Seeks Licensees for Highly Specific and Sensitive DNA Extraction Method [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- Under-twisted DNA origami delivers cancer drugs to tumors [Last Updated On: September 13th, 2012] [Originally Added On: September 13th, 2012]
- DNA ‘junk' contains a treasure of information about disease [Last Updated On: September 14th, 2012] [Originally Added On: September 14th, 2012]
- Research: Hopping DNA supercoils [Last Updated On: September 14th, 2012] [Originally Added On: September 14th, 2012]
- DNA evidence missing in Assange case [Last Updated On: September 16th, 2012] [Originally Added On: September 16th, 2012]
- Missing DNA evidence in Assange case [Last Updated On: September 16th, 2012] [Originally Added On: September 16th, 2012]
- No Assange DNA on torn condom - report [Last Updated On: September 16th, 2012] [Originally Added On: September 16th, 2012]
- Calif. DNA Collection From Arrestees Challenged [Last Updated On: September 17th, 2012] [Originally Added On: September 17th, 2012]
- Federal appeals court to hear challenge to California DNA collection law [Last Updated On: September 17th, 2012] [Originally Added On: September 17th, 2012]
- Applied DNA Sciences Contracts With Inventionland [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Applied DNA Sciences, Textile Centre of Excellence Unveil Textiles Anti-Counterfeiting Platform [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- Rapist caught by DNA test jailed [Last Updated On: September 18th, 2012] [Originally Added On: September 18th, 2012]
- FBI eager to embrace mobile 'Rapid DNA' testing [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Expansion of criminal DNA collection proposed [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- Assessment of HPV DNA Alone Insufficient to Identify HPV-Driven Head and Neck Cancers [Last Updated On: September 19th, 2012] [Originally Added On: September 19th, 2012]
- George Zimmerman's DNA, not Trayvon Martin's, found on gun [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- George Zimmerman: No DNA evidence of a struggle for his gun [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- DNA evidence links Vallejo man to January stabbing in SLO, police say [Last Updated On: September 20th, 2012] [Originally Added On: September 20th, 2012]
- Legal hurdles threaten to slow FBI's 'Rapid DNA' revolution [Last Updated On: September 21st, 2012] [Originally Added On: September 21st, 2012]
- Judge denies motions to dismiss DNA evidence in Hudson murder case [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- Researchers report novel approach for single molecule electronic DNA sequencing [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- Novel approach for single molecule electronic DNA sequencing [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- DNA helps Wyckoff police nab 'motorcycle burglar' [Last Updated On: September 22nd, 2012] [Originally Added On: September 22nd, 2012]
- Novel DNA barcode engineered: New technology could launch biomedical imaging to next level [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- DNA Microarray 2012: A Focus on Sales Growth [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- DNA in 1980 Maine murder case shown to match defendant [Last Updated On: September 25th, 2012] [Originally Added On: September 25th, 2012]
- DNA recovered during Rayney probe [Last Updated On: September 26th, 2012] [Originally Added On: September 26th, 2012]
- FBI makes headway on DNA testing backlog, report says [Last Updated On: September 26th, 2012] [Originally Added On: September 26th, 2012]
- Male DNA found for first time in female brains [Last Updated On: September 27th, 2012] [Originally Added On: September 27th, 2012]
- Bearing Sons Leaves Male DNA Traces in Mom's Brain [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Many female brains contain male DNA [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- New drive to take criminals' DNA [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- DNA remains focus in Highway of Tears cases [Last Updated On: September 28th, 2012] [Originally Added On: September 28th, 2012]
- Analysing The Evidence On DNA [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- DNA Clears Death Row Inmate [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- Burn victim identified by DNA in maggots [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- DNA fails to match couple on two other skeletons [Last Updated On: September 29th, 2012] [Originally Added On: September 29th, 2012]
- DNA Dynamics Update on Sports Title [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA solves teen's 1974 murder [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- Some Women's Brains Contain Male DNA: Study [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA exonerates man after 15 years on death row - Video [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA link prompts charges in cold case rapes - Video [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- DNA testing has its limits [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- DNA evidence exonerates 300th prisoner nationwide [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- DNA testing facility in Pune to speed up cases in Mumbai [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- Rape DNA process 'not adequate' [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- IntegenX Announces U.S. Launch of the RapidHIT™ 200 System – Rapid DNA Technology That Will Revolutionize the Use of ... [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- 300th person exonerated by DNA evidence [Last Updated On: October 2nd, 2012] [Originally Added On: October 2nd, 2012]
- Inherited Diseases Found Sooner in Newborns With DNA Scan [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]
- Woman charged in husband's death gives DNA sample [Last Updated On: October 3rd, 2012] [Originally Added On: October 3rd, 2012]