Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining … – Nature.com

Posted: December 14, 2023 at 3:37 am

Khan, S. et al. Role of recombinant DNA technology to improve life. Int. J. Genomics Proteomics 2016, 2405954 (2016).

Google Scholar

Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648659 (2018).

Article CAS PubMed Google Scholar

Maetzig, T., Galla, M., Baum, C. & Schambach, A. Gammaretroviral vectors: biology, technology and application. Viruses 3, 677713 (2011).

Article PubMed PubMed Central Google Scholar

Dotti, G., Gottschalk, S., Savoldo, B. & Brenner, M. K. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev. 257, 107126 (2014).

Article CAS PubMed Google Scholar

Walther, W. & Stein, U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60, 249271 (2000).

Article CAS PubMed Google Scholar

Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target Ther. 6, 53 (2021).

Article CAS PubMed PubMed Central Google Scholar

Soundara Rajan, T., Gugliandolo, A., Bramanti, P. & Mazzon, E. In vitro-transcribed mRNA chimeric antigen receptor T cell (IVT mRNA CAR T) therapy in hematologic and solid tumor management: a preclinical update. Int. J. Mol. Sci. 21, 6514 (2020).

Article PubMed PubMed Central Google Scholar

Kebriaei, P. et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 126, 33633376 (2016).

Article PubMed PubMed Central Google Scholar

Monjezi, R. et al. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 31, 186194 (2017).

Article CAS PubMed Google Scholar

Li, X. et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc. Natl Acad. Sci. USA 110, E478E487 (2013).

CAS PubMed Google Scholar

Bishop, D. C. et al. PiggyBac-engineered T cells expressing CD19-specific CARs that lack IgG1 Fc spacers have potent activity against B-ALL xenografts. Mol. Ther. 26, 18831895 (2018).

Article CAS PubMed PubMed Central Google Scholar

Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 4449 (2020).

Article CAS PubMed Google Scholar

Schober, K. et al. Orthotopic replacement of T-cell receptor - and -chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 974984 (2019).

Article PubMed Google Scholar

Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405409 (2018).

Article CAS PubMed PubMed Central Google Scholar

Capecchi, M. R. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 7076 (1989).

Article CAS PubMed Google Scholar

Puchta, H., Dujon, B. & Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21, 50345040 (1993).

Article CAS PubMed PubMed Central Google Scholar

Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824844 (2020).

Article CAS PubMed Google Scholar

Lee, J., Chung, J.-H., Kim, H. M., Kim, D.-W. & Kim, H. Designed nucleases for targeted genome editing. Plant Biotechnol. J. 14, 448462 (2016).

Article CAS PubMed Google Scholar

Hendel, A. et al. Chemically modified guide RNAs enhance CRISPRCas genome editing in human primary cells. Nat. Biotechnol. 33, 985989 (2015).

Article CAS PubMed PubMed Central Google Scholar

Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

Article CAS PubMed PubMed Central Google Scholar

Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R. & Moriarity, B. S. Engineering of primary human B cells with CRISPR/Cas9 targeted nuclease. Sci. Rep. 8, 12144 (2018).

Article PubMed PubMed Central Google Scholar

Osborn, M. J. et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol. Ther. 24, 570581 (2016).

Article CAS PubMed PubMed Central Google Scholar

Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535541 (2020).

Article CAS PubMed PubMed Central Google Scholar

Bak, R. O., Dever, D. P. & Porteus, M. H. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat. Protoc. 13, 358376 (2018).

Article CAS PubMed PubMed Central Google Scholar

June, C. H., Blazar, B. R. & Riley, J. L. Engineering lymphocyte subsets: tools, trials and tribulations. Nat. Rev. Immunol. 9, 704716 (2009).

Article CAS PubMed PubMed Central Google Scholar

Sather, B. D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7, 307ra156 (2015).

Article PubMed PubMed Central Google Scholar

Osborn, M. J. et al. CRISPR/Cas9-based cellular engineering for targeted gene overexpression. Int. J. Mol. Sci. 19, 946 (2018).

Article PubMed PubMed Central Google Scholar

Pomeroy, E. J. et al. A genetically engineered primary human natural killer cell platform for cancer immunotherapy. Mol. Ther. 28, 5263 (2020).

Article CAS PubMed Google Scholar

Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358378 (2019).

Article CAS PubMed PubMed Central Google Scholar

Samulski, R. J. & Muzyczka, N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev. Virol. 1, 427451 (2014).

Article PubMed Google Scholar

Deyle, D. R., Li, L. B., Ren, G. & Russell, D. W. The effects of polymorphisms on human gene targeting. Nucleic Acids Res. 42, 31193124 (2014).

Article CAS PubMed Google Scholar

Ang, J. X. D. et al. Considerations for homology-based DNA repair in mosquitoes: impact of sequence heterology and donor template source. PLoS Genet. 18, e1010060 (2022).

Article CAS PubMed PubMed Central Google Scholar

Kan, Y., Ruis, B., Lin, S. & Hendrickson, E. A. The mechanism of gene targeting in human somatic cells. PLoS Genet. 10, e1004251 (2014).

Article PubMed PubMed Central Google Scholar

Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 6268 (2015).

Article CAS PubMed PubMed Central Google Scholar

Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127147 (2019).

Article CAS PubMed PubMed Central Google Scholar

Semenova, N. et al. Multiple cytosolic DNA sensors bind plasmid DNA after transfection. Nucleic Acids Res. 47, 1023510246 (2019).

Article CAS PubMed PubMed Central Google Scholar

Maurisse, R. et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 10, 9 (2010).

Article PubMed PubMed Central Google Scholar

Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 11421149 (2016).

Article CAS PubMed Google Scholar

Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870880 (2013).

Article CAS PubMed PubMed Central Google Scholar

Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461488 (2014).

Article CAS PubMed Google Scholar

Clark, K., Plater, L., Peggie, M. & Cohen, P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J. Biol. Chem. 284, 1413614146 (2009).

Article CAS PubMed PubMed Central Google Scholar

Richters, A. et al. Identification and further development of potent TBK1 inhibitors. ACS Chem. Biol. 10, 289298 (2015).

Article CAS PubMed Google Scholar

Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGASSTING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548569 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zhang, Z., Qiu, S., Zhang, X. & Chen, W. Optimized DNA electroporation for primary human T cell engineering. BMC Biotechnol. 18, 4 (2018).

Article PubMed PubMed Central Google Scholar

Kay, M. A., He, C.-Y. & Chen, Z.-Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 12871289 (2010).

Article CAS PubMed PubMed Central Google Scholar

Obst, R. The timing of T cell priming and cycling. Front. Immunol. 6, 563 (2015).

Article PubMed PubMed Central Google Scholar

Yu, L. & Liu, P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct. Target Ther. 6, 170 (2021).

Article CAS PubMed PubMed Central Google Scholar

Vance, R. E. Cytosolic DNA sensing: the field narrows. Immunity 45, 227228 (2016).

Article CAS PubMed Google Scholar

Zahid, A., Ismail, H., Li, B. & Jin, T. Molecular and structural basis of DNA sensors in antiviral innate immunity. Front. Immunol. 11, 613039 (2020).

Article CAS PubMed PubMed Central Google Scholar

Wierson, W. A. et al. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. Elife 9, e53968 (2020).

Article CAS PubMed PubMed Central Google Scholar

See the original post:
Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining ... - Nature.com

Related Posts