Breaking boundaries in our DNA – Phys.Org

Posted: July 25, 2017 at 11:47 am

July 25, 2017 by Marieke Oudelaar, Oxford Science Blog Abstract illustration of self-interacting domains and their boundaries. Hanssen and colleagues show that removal of such boundaries extends the self interacting domains to include other genes which are inappropriately activated. Credit: Oxford Science Blog

Our bodies are composed of trillions of cells, each with its own job. Cells in our stomach help digest our food, while cells in our eyes detect light, and our immune cells kill off bugs. To be able to perform these specific jobs, every cell needs a different set of tools, which are formed by the collection of proteins that a cell produces. The instructions for these proteins are written in the approximately 20,000 genes in our DNA.

Despite all these different functions and the need for different tools, all our cells contain the exact same DNA sequence. But one central question remains unanswered how does a cell know which combination of the 20,000 genes it should activate to produce its specific toolkit?

The answer to this question may be found in the pieces of DNA that lie between our protein-producing genes. Although our cells contain a lot of DNA, only a small part of this is actually composed of genes. We don't really understand the function of most of this other sequence, but we do know that some of it has a function in regulating the activity of genes. An important class of such regulatory DNA sequences are the enhancers, which act as switches that can turn genes on in the cells where they are required.

However, we still don't understand how these enhancers know which genes should be activated in which cells. It is becoming clear that the way DNA is folded inside the cell is a crucial factor, as enhancers need to be able to interact physically with genes in order to activate them. It is important to realise that our cells contain an enormous amount of DNA approximately two meters! which is compacted in a very complex structure to allow it to fit into our tiny cells. The long strings of DNA are folded into domains, which cluster together to form larger domains, creating an intricate hierarchical structure. This domain organisation prevents DNA from tangling together like it would if it were an unwound ball of wool, and allows specific domains to be unwound and used when they are needed.

Researchers have identified key proteins that appear to define and help organise this domain structure. One such protein is called CTCF, which sticks to a specific sequence of DNA that is frequently found at the boundaries of these domains. To explore the function of these CTCF boundaries in more detail and to investigate what role they may play in connecting enhancers to the right genes, our team studied the domain that contains the -globin genes, which produce the haemoglobin that our red blood cells use to circulate oxygen in our bodies.

Firstly, as expected from CTCF's role in defining boundaries, we showed that CTCF boundaries help organise the -globin genes into a specific domain structure within red blood cells. This allows the enhancers to physically interact with and switch on the -globin genes in this specific cell type. We then used the gene editing technology of CRISPR/Cas9 to snip out the DNA sequences that normally bind CTCF, and found that the boundaries in these edited cells become blurred and the domain loses its specific shape. The -globin enhancers now not only activate the -globin genes, but cross the domain boundaries and switch on genes in the neighbouring domain.

This study provides new insights into the contribution of CTCF in helping define these domain boundaries to help organise our DNA and restrict the regulation of gene activity within the cells where it is needed. This is an important finding that could explain the misregulation of gene activity that contributes to many diseases. For example in cancer, mutations of these boundary sequences in our DNA could lead to inappropriate activation of the genes that drive tumour growth.

The full study, 'Tissue-specific CTCFcohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo', can be read in the journal Nature Cell Biology.

Explore further: New study helps solve a great mystery in the organization of our DNA

More information: Lars L. P. Hanssen et al. Tissue-specific CTCFcohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo, Nature Cell Biology (2017). DOI: 10.1038/ncb3573

After decades of research aiming to understand how DNA is organized in human cells, scientists at the Gladstone Institutes have shed new light on this mysterious field by discovering how a key protein helps control gene organization.

It seems like a feat of magic. Human DNA, if stretched out into one, long spaghetti-like strand, would measure 2 meters (six feet) long. And yet, all of our DNA is compacted more than 10,000 times to fit inside a single cell. ...

Twenty years ago, the protein complex cohesin was first described by researchers at the IMP. They found that its shape strikingly corresponds to its function: when a cell divides, the ring-shaped structure of cohesin keeps ...

Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) have discovered that the transcriptional regulator CTCF plays an essential role in antibody production. The study, led by Dr. Almudena ...

Within almost every human cell is a nucleus six microns in diameterabout one 300th of a human hair's widththat is filled with roughly three meters of DNA. As the instructions for all cell processes, the DNA must be ...

In cells, DNA is transcribed into RNAs that provide the molecular recipe for cells to make proteins. Most of the genome is transcribed into RNA, but only a small proportion of RNAs are actually from the protein-coding regions ...

Researchers from Monash University's Biomedicine Discovery Institute have helped solve the mystery of how emus became flightless, identifying a gene involved in the development and evolution of bird wings.

Researchers at the University of California San Diego have found that microbial species living on cheese have transferred thousands of genes between each other. They also identified regional hotspots where such exchanges ...

A team of scientists from the Kunming Institute of Botany in China and the Max Planck Institute for Chemical Ecology in Jena has discovered that parasitic plants of the genus Cuscuta (dodder) not only deplete nutrients from ...

Our bodies are composed of trillions of cells, each with its own job. Cells in our stomach help digest our food, while cells in our eyes detect light, and our immune cells kill off bugs. To be able to perform these specific ...

Humpback whales learn songs in segments like the verses of a human song and can remix them, a new study involving University of Queensland research has found.

New research from Australia and Sweden has shown how a dragonfly's brain anticipates the movement of its prey, enabling it to hunt successfully. This knowledge could lead to innovations in fields such as robot vision.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Here is the original post:
Breaking boundaries in our DNA - Phys.Org

Related Posts