Neural effects of TMS trains on the human prefrontal cortex | Scientific Reports – Nature.com

Posted: December 25, 2023 at 6:35 am

Chail, A., Saini, R. K., Bhat, P. S., Srivastava, K. & Chauhan, V. Transcranial magnetic stimulation: A review of its evolution and current applications. Ind. Psychiatry J. 27, 172180. https://doi.org/10.4103/ipj.ipj_88_18 (2018).

Article PubMed PubMed Central Google Scholar

Blumberger, D. M. et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet 391, 16831692. https://doi.org/10.1016/S0140-6736(18)30295-2 (2018).

Article PubMed Google Scholar

Trevizol, A. P. et al. Predictors of remission after repetitive transcranial magnetic stimulation for the treatment of major depressive disorder: An analysis from the randomised non-inferiority THREE-D trial. EClinicalMedicine 22, 100349. https://doi.org/10.1016/j.eclinm.2020.100349 (2020).

Article PubMed PubMed Central Google Scholar

Stefanou, M.-I. et al. Brain state-dependent brain stimulation with real-time electroencephalography-triggered transcranial magnetic stimulation. JoVE 2019, 59711. https://doi.org/10.3791/59711 (2019).

Article Google Scholar

Zrenner, B. et al. Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul. 13, 197205. https://doi.org/10.1016/j.brs.2019.10.007 (2020).

Article PubMed Google Scholar

Zrenner, C., Desideri, D., Belardinelli, P. & Ziemann, U. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul. 11, 374389. https://doi.org/10.1016/j.brs.2017.11.016 (2018).

Article PubMed Google Scholar

Eshel, N. et al. Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacol 45, 10181025. https://doi.org/10.1038/s41386-020-0633-z (2020).

Article Google Scholar

Ilmoniemi, R. J. et al. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8, 35373540. https://doi.org/10.1097/00001756-199711100-00024 (1997).

Article CAS PubMed Google Scholar

Ilmoniemi, R. J. & Kii, D. Methodology for Combined TMS and EEG. Brain Topogr. 22, 233248. https://doi.org/10.1007/s10548-009-0123-4 (2010).

Article PubMed Google Scholar

Ozdemir, R. A. et al. Cortical responses to noninvasive perturbations enable individual brain fingerprinting. Brain Stimul. 14, 391403. https://doi.org/10.1016/j.brs.2021.02.005 (2021).

Article PubMed PubMed Central Google Scholar

Rogasch, N. C. & Fitzgerald, P. B. Assessing cortical network properties using TMS-EEG. Hum. Brain Mapp. 34, 16521669. https://doi.org/10.1002/hbm.22016 (2013).

Article PubMed Google Scholar

Esser, S. K. et al. A direct demonstration of cortical LTP in humans: A combined TMS/EEG study. Brain Res. Bull. 69, 8694. https://doi.org/10.1016/j.brainresbull.2005.11.003 (2006).

Article CAS PubMed Google Scholar

Hamidi, M., Slagter, H. A., Tononi, G. & Postle, B. R. Brain responses evoked by high-frequency repetitive transcranial magnetic stimulation: An event-related potential study. Brain Stimul. 3, 214. https://doi.org/10.1016/j.brs.2009.04.001 (2010).

Article PubMed PubMed Central Google Scholar

Veniero, D., Maioli, C. & Miniussi, C. Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation. J Neurophysiol 104, 15781588. https://doi.org/10.1152/jn.00172.2010 (2010).

Article PubMed Google Scholar

Tremblay, S. et al. Clinical utility and prospective of TMS-EEG. Clin. Neurophysiol. 130, 802844. https://doi.org/10.1016/j.clinph.2019.01.001 (2019).

Article PubMed Google Scholar

Khknen, S., Komssi, S., Wilenius, J. & Ilmoniemi, R. J. Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. NeuroImage 24, 955960. https://doi.org/10.1016/j.neuroimage.2004.09.048 (2005).

Article PubMed Google Scholar

Lioumis, P., Kii, D., Savolainen, P., Mkel, J. P. & Khknen, S. Reproducibility of TMS-Evoked EEG responses. Hum. Brain Mapp. 30, 13871396. https://doi.org/10.1002/hbm.20608 (2009).

Article PubMed Google Scholar

Lucas, M. V., Cline, C. C., Sun, Y., Yan, M., Hogoboom, N., & Etkin, A. Characterization of rTMS acute response profiles for systematic design of neuromodulation interventions. In revision.

Koenigs, M. & Grafman, J. The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 201, 239243. https://doi.org/10.1016/j.bbr.2009.03.004 (2009).

Article PubMed PubMed Central Google Scholar

Voineskos, D. et al. Neurophysiological effects of repetitive transcranial magnetic stimulation (rTMS) in treatment resistant depression. Clin. Neurophysiol. 132, 23062316. https://doi.org/10.1016/j.clinph.2021.05.008 (2021).

Article PubMed Google Scholar

Voineskos, D. et al. Altered transcranial magnetic stimulation-electroencephalographic markers of inhibition and excitation in the dorsolateral prefrontal cortex in major depressive disorder. Biol. Psychiatry 85, 477486. https://doi.org/10.1016/j.biopsych.2018.09.032 (2019).

Article PubMed Google Scholar

Keller, C. J. et al. Induction and quantification of excitability changes in human cortical networks. J Neurosci 38, 53845398. https://doi.org/10.1523/JNEUROSCI.1088-17.2018 (2018).

Article CAS PubMed PubMed Central Google Scholar

Biabani, M., Fornito, A., Mutanen, T. P., Morrow, J. & Rogasch, N. C. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul 12, 15371552. https://doi.org/10.1016/j.brs.2019.07.009 (2019).

Article PubMed Google Scholar

Freedberg, M., Reeves, J. A., Hussain, S. J., Zaghloul, K. A. & Wassermann, E. M. Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric. PLoS ONE 15, e0216185. https://doi.org/10.1371/journal.pone.0216185 (2020).

Article CAS PubMed PubMed Central Google Scholar

Rocchi, L. et al. Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul 14, 418. https://doi.org/10.1016/j.brs.2020.10.011 (2021).

Article PubMed Google Scholar

Ross, J. M. et al. A structured ICA-based process for removing auditory evoked potentials. Sci Rep 12, 1391. https://doi.org/10.1038/s41598-022-05397-3 (2022).

Article CAS PubMed PubMed Central ADS Google Scholar

Ross, J. M., Sarkar, M. & Keller, C. J. Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials. Hum. Brain Mapp. 43, 51415153. https://doi.org/10.1002/hbm.25990 (2022).

Article PubMed PubMed Central Google Scholar

Richardson, M., Paxton, A., & Kuznetsov, N. Nonlinear Methods for Understanding Complex Dynamical Phenomena in Psychological Science (APA Psychological Science Agenda, 2017).

Richardson, M. J., Schmidt, R. C. & Kay, B. A. Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis. Biol. Cybern. 96, 5978. https://doi.org/10.1007/s00422-006-0104-6 (2007).

Article PubMed Google Scholar

Marwan, N. A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164, 312. https://doi.org/10.1140/epjst/e2008-00829-1 (2008).

Article Google Scholar

Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. Screening questionnaire before TMS: An update. Clin. Neurophysiol. 122, 1686. https://doi.org/10.1016/j.clinph.2010.12.037 (2011).

Article PubMed Google Scholar

Yeung, A. et al. The Quick inventory of depressive symptomatology, clinician rated and self-report: A psychometric assessment in Chinese Americans with major depressive disorder. J. Nerv. Ment. Dis. 200, 712715. https://doi.org/10.1097/NMD.0b013e318261413d (2012).

Article PubMed PubMed Central Google Scholar

Rush, A. J. et al. The 16-item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biol. Psychiatry 54, 573583. https://doi.org/10.1016/s0006-3223(02)01866-8 (2003).

Article PubMed Google Scholar

Conde, V. et al. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. NeuroImage 185, 300312. https://doi.org/10.1016/j.neuroimage.2018.10.052 (2019).

Article PubMed Google Scholar

Nikouline, V., Ruohonen, J. & Ilmoniemi, R. J. The role of the coil click in TMS assessed with simultaneous EEG. Clin. Neurophysiol. 110, 13251328. https://doi.org/10.1016/S1388-2457(99)00070-X (1999).

Article CAS PubMed Google Scholar

Gordon, P. C., Desideri, D., Belardinelli, P., Zrenner, C. & Ziemann, U. Comparison of cortical EEG responses to realistic sham versus real TMS of human motor cortex. Brain Stimul. 11, 13221330. https://doi.org/10.1016/j.brs.2018.08.003 (2018).

Article PubMed Google Scholar

Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 20082039. https://doi.org/10.1016/j.clinph.2009.08.016 (2009).

Article PubMed PubMed Central Google Scholar

Rossini, P. M. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 91, 7992. https://doi.org/10.1016/0013-4694(94)90029-9 (1994).

Article CAS PubMed Google Scholar

Rossini, P. M. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 126, 10711107. https://doi.org/10.1016/j.clinph.2015.02.001 (2015).

Article CAS PubMed PubMed Central Google Scholar

Stokes, M. G. et al. Simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies using transcranial magnetic stimulation. J. Neurophysiol. 94, 45204527. https://doi.org/10.1152/jn.00067.2005 (2005).

Article PubMed Google Scholar

Pridmore, S., Fernandes Filho, J. A., Nahas, Z., Liberatos, C. & George, M. S. Motor threshold in transcranial magnetic stimulation: A comparison of a neurophysiological method and a visualization of movement method. J. ECT 14, 2527 (1998).

Article CAS PubMed Google Scholar

Chen, A. C. et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc. Natl. Acad. Sci. 110, 1994419949. https://doi.org/10.1073/pnas.1311772110 (2013).

Article CAS PubMed PubMed Central ADS Google Scholar

Nielsen, J. D. et al. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. Neuroimage 174, 587598. https://doi.org/10.1016/j.neuroimage.2018.03.001 (2018).

Article PubMed Google Scholar

Thielscher, A., Antunes, A., & Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 222225 (IEEE, Milan, 2015). https://doi.org/10.1109/EMBC.2015.7318340.

Li, X. et al. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex reduces nicotine cue craving. Biol. Psychiatry 73, 714720. https://doi.org/10.1016/j.biopsych.2013.01.003 (2013).

Article PubMed PubMed Central Google Scholar

Li, X. et al. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex reduces resting-state insula activity and modulates functional connectivity of the orbitofrontal cortex in cigarette smokers. Drug Alcohol Depend 174, 98105. https://doi.org/10.1016/j.drugalcdep.2017.02.002 (2017).

Article PubMed PubMed Central Google Scholar

Liu, Q. et al. Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation in the treatment of methamphetamine patients. Front. Psychiatry 13, 8447. https://doi.org/10.3389/fpsyt.2022.842947 (2022).

Article Google Scholar

Shen, Y. et al. 10-Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex reduces heroin cue craving in long-term addicts. Biol Psychiatry 80, e13-14. https://doi.org/10.1016/j.biopsych.2016.02.006 (2016).

Article PubMed Google Scholar

Gordon, P. C. et al. Recording brain responses to TMS of primary motor cortex by EEG - utility of an optimized sham procedure. Neuroimage 245, 118708. https://doi.org/10.1016/j.neuroimage.2021.118708 (2021).

Article PubMed Google Scholar

Veniero, D., Bortoletto, M. & Miniussi, C. TMS-EEG co-registration: On TMS-induced artifact. Clin. Neurophysiol. 120, 13921399. https://doi.org/10.1016/j.clinph.2009.04.023 (2009).

Article PubMed Google Scholar

Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 921. https://doi.org/10.1016/j.jneumeth.2003.10.009 (2004).

Article PubMed Google Scholar

Cline, C. C., Lucas, M. V., Sun, Y., Menezes, M., & Etkin, A. Advanced Artifact Removal for Automated TMS-EEG Data Processing. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) 10391042 (IEEE, Italy, 2021). https://doi.org/10.1109/NER49283.2021.9441147.

See the rest here:

Neural effects of TMS trains on the human prefrontal cortex | Scientific Reports - Nature.com

Related Posts