Some of the most fundamental processes in nature occur at the microscopic scale, far beyond the limits of what we can see by eye, which motivates the development of technology that allows us to see beyond this limit. As early as the 4th century AD, people had discovered the basic concept of an optical lens, and by the 13th century, they were already using glass lenses to improve their eyesight and to magnify objects such as plants and insects to better understand them.1 With time, these simple magnifying glasses developed into advanced optical systems, known as light microscopes, which allow us to see and understand the microscopic world beyond the limits of our perception. Today, light microscopy is a core technique in many areas of science and technology, including life sciences, biology, materials sciences, nanotechnology, industrial inspection, forensics and many more. In this article, we will first explore the basic working principle of light microscopy. Building on this, we will discuss some more advanced forms of light microscopy that are commonly used today and compare their strengths and weaknesses for different applications.
What is light microscopy?
Parts of a microscope and how a light microscope works
Early microscopes used an illumination system comprising sunlight that was collected and reflected onto the sample by a mirror. Today, most microscopes use artificial light sources such as light bulbs, light-emitting diodes (LEDs) or lasers to make more reliable and controllable illumination systems, which can be tailored to a given application. In these systems, light from the source is typically collected using a condenser lens and then shaped and optically filtered before being focused onto the sample. Shaping the light is essential to achieve high resolution and contrast, and often includes controlling the sample area that is illuminated and the angles at which light impinges on it. Optical filtering of the illumination light, using optical filters that modify its spectrum and polarization, can be used to highlight certain features of a sample, to improve the visibility of weak signatures or to observe a samples fluorescence.
The imaging system collects illuminating light that has interacted with the sample and produces a magnified image that can be viewed (Figure 1). This is achieved using two main groups of optical elements: first, an objective lens that collects as much light from the sample as possible and second, an eyepiece lens which relays the collected light to the observers eye or a camera system. The imaging system may also include elements such as apertures and filters that select certain portions of light from the sample, for example to see only light that has been scattered off the sample, or only light of a certain color or wavelength. As in the case of the illumination system, this type of filtering can be extremely useful to single out certain features of interest that would remain hidden when imaging all the light from the sample.
Overall, both the illumination and the imaging system play a key role in how well a light microscope performs. To get the best out of light microscopy in your application, it is essential to have a good understanding of how a basic light microscope works, and what variations exist today.
Simple and compound microscopes
A single lens can be used as a magnifying glass which increases the apparent size of an object when it is held close to the lens. Looking through the magnifying glass at the object, we see a magnified and virtual image of the object. This effect is used in simple microscopes, which consist of a single lens that images a sample held clamped into a frame and illuminated from below, as is shown in Figure 2. This type of microscope can achieve a magnification of typically 2-6 x, which is sufficient to study relatively large samples. However, achieving higher magnification and better image quality requires the use of more optical elements, which led to the development of the compound microscope (Figure 3).
In a compound microscope, the sample is illuminated from the bottom to observe transmitted light, or from the top to observe reflected light. Light from the sample is collected by an optical system consisting of two main lens groups: the objective and the eyepiece, whose individual powers multiply to enable much higher magnifications than those achieved by a simple microscope. The objective collects light from the sample and typically has a magnification of 40-100 x. Some compound microscopes feature multiple objective lenses on a rotating turret known as a nose piece, allowing the user to choose between different magnifications. The image from the objective is picked up by the eyepiece, which magnifies the image again and relays it to the users eye, with typical eyepieces having a magnification of 10 x. Therefore, the total magnification of a compound microscope, which is the product of the objective magnification and the eyepiece magnification, typically lies in the range of 400-1000 x.
r = 0.61 (/NA)
In standard compound microscopes (Figure 4a), the sample (often on a glass slide) is held on a stage that can be moved manually or electronically for higher precision, and the illumination system is in the lower part of the microscope, while the imaging system is above the sample. However, the microscope body can usually also be adapted to particular uses. For example, stereo microscopes (Figure 4b) feature two eyepieces at a slight angle to each other, allowing the user to see a slightly three-dimensional image. In many biology applications, an inverted microscope design (Figure 4c) is used, where both the illumination system and the imaging optics are below the sample stage to facilitate placing e.g., containers of cell cultures onto it. Finally, comparison microscopes (Figure 4d) were often used in forensics, for example to compare fingerprints or bullets by eye before the advent of digital microscopy, which allowed images to be saved and compared.
Types of light microscopy
In the following, we will present a selection of different light microscopy techniques available today, discuss their main operating principles and the strengths and weaknesses of each technique.
Bright field microscopy (BFM) is the simplest form of light microscopy, where the sample is illuminated from above or below, and light transmitted through or reflected from it is collected to form an image that can be viewed. Contrast and color in the image are formed because absorption and reflection vary over the area of the sample. BFM was the first type of light microscopy developed and uses a relatively simple optical setup, which allowed early scientists to study microorganisms and cells in transmission. Today, it is still very useful for the same purposes, and is also widely used to study other partially transparent samples such as thin materials in transmission mode (Figure 5), or microelectronics and other small structures in reflection mode. However, the magnification of BFM is limited to 1300 x and it is not suitable for imaging highly transparent samples.
Figure 5: Bright field microscopy. Left: Transmission mode - flakes of graphite (dark grey) and graphene (lightest grey) as seen in a bright field microscope. Here, the difference in brightness seen on the image is proportional to the thickness of the graphite layer. Right: Reflection mode - flakes of graphene and graphite on a SiO2 surface. Small surface contaminants are also visible. Credit: Author.
Figure 7: Phase contrast microscopy of a human embryonic stem cell colony. Credit Sabrina Lin, Prue Talbot, Stem Cell Center University of California, Riverside.
Figure 8: Differential interference contrast microscopy. Left: Schematic setup for DICM. Right: Live adult Caenorhabditis elegans (C. elegans) nematode imaged by DICM. Credit: Bob Goldstein, Cell Image Library. Reproduced under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0).
Figure 9: Polarization microscopy. Photomicrograph of olivine adcumulate, formed by the accumulation of crystals with different birefringence. Variations of thickness and refractive index across the sample result in different colors. Credit: R. Hill, CSIRO.
Figure 10: Fluorescence microscopy. Left: Working principle - illumination light is filtered by a short-pass excitation filter and reflected towards the sample by a dichroic mirror. Fluorescence from the sample passes the dichroic mirror and is additionally filtered by an emission filter to remove residual excitation light in the image. Right: Fluorescence image of molecules hosted in an organic crystal (crystal outline shown dashed yellow). The background is not completely dark due to fluorescence from other molecules and the crystal material. Credit: Author.
Figure 11: Immunofluorescence microscopy. Two interphase cells with immunofluorescence labeling of actin filaments (purple), microtubules (yellow), and nuclei (green). Credit: Torsten Wittmann, NIGMS Image Gallery.
A disadvantage of TPM is that the probability of two-photon absorption is much lower than single-photon absorption and thus requires high-intensity illumination such as pulsed lasers to achieve a practical fluorescence signal intensity.
Figure 13: Two-photon microscopy. Thin optical section of pollen, showing fluorescence mostly form the outer layers. Credit: Michael Cammer, Cell Image Library.
Total internal reflection fluorescence (TIRF) is a fluorescence microscopy technique that allows 2D fluorescence images to be made of an extremely thin (approximately 100 nm thick) sample slice.10 This is achieved by exciting the fluorescence of the sample by evanescent fields of the illuminating light, which occur when it undergoes total internal reflection at a boundary between two materials of different refractive index (n). Evanescent fields have the same wavelength as the illuminating light but are tightly bound to the interface. In TIRF microscopy, the excitation light typically undergoes total internal reflection at the interface between a glass slide (n = 1.52) and the aqueous medium (n = 1.35) the sample is dispersed in. The intensity of the evanescent field falls off exponentially with distance from the interface, such that only fluorophores close the interface are observed in the final image. This also leads to a strong suppression of fluorescence background from areas outside the slice, which allows weak fluorescence signals to be picked up, for example when localizing single molecules. This makes TIRF extremely useful to observe the weak signal of fluorescent proteins (Figure 15) involved in intercellular interactions, but also requires the sample to be dispersed in an aqueous medium, which may limit the types of samples that can be measured.
Figure 16: Sample preparation for expansion microscopy. A cell is first stained and then linked to a polymer gel matrix. The cell structure itself is then dissolved (digested), allowing the stained parts to expand isotropically with the gel, allowing the stained structure to be imaged with more detail.
Deconvolution in light microscopy
Figure 17: Image deconvolution. Left: Original fluorescence image. Right: Image after deconvolution, showing increased detail. Credit: Author.
Light microscopy vs electron microscopy
Summary and conclusion
Light microscopy techniques comparison table
Technique
Advantages
Limitations
Typical applications
Bright field microscopy
Relatively simple setup with few optical elements
Low contrast, fully transparent objects cannot be imaged directly and may require staining
Imaging colored or stained samples15 and partially transparent materials16
Dark field microscopy
Reveals small structures and surface roughness, allows imaging of unstained samples
High illumination power required can damage the sample, only scattering image features seen
Imaging particles in cells,17 surface inspection18
Phase contrast microscopy
Enables imaging of transparent samples
Complex optical setup, high illumination power required can damage the sample, generally darker images
Tracking cell motion,19 imaging larvae20
Differential interference contrast microscopy
Higher resolution than PCM
Complex optical setup, high illumination power required can damage the sample, generally darker images
High resolution imaging of live, unstained cells21 and nanoparticles22
Polarized light microscopy
Strong background suppression from non-birefringent areas of a sample, allows measurement of sample thickness and birefringence
Requires a birefringent sample
Imaging collagen,23 revealing grain boundaries in crystals24
Fluorescence microscopy
Allows individual fluorophores and particular areas of interest in a sample to be singled out, can overcome the resolution limit
Requires a fluorescent sample and a sensitive detector, photobleaching can diminish signal
Imaging cell components, single molecules, proteins25
Immunofluorescence microscopy
Visualize specific biomolecules using antibody targeting
Extensive sample preparation, requires a fluorescent sample, photobleaching
Identifying and tracking cells26 and proteins27
Confocal microscopy
Low background signal, possible to create 3D images
Slow imaging speed, requires a complicated optical system
3D cell imaging, imaging samples with weak fluorescence signals, surface profiling28.
Two-photon microscopy
Deep sample penetration, low background signal, less photobleaching
Slow imaging speed, requires a complicated optical system and high-power illumination
Neuroscience,29 deep tissue imaging30
Light sheet microscopy
Images only an extremely thin slice of the sample, can create 3D images by rotating the sample
Slow imaging speed, requires a complicated optical system
3D imaging of cells and organisms8
Total internal reflection fluorescence microscopy
Strong background suppression, extremely fine vertical sectioning
Imaging limited to thin area of sample, requires a complicated optical system, sample needs to be in aqueous medium
Single molecule imaging,31 imaging molecular trafficking32
Expansion microscopy
Increases effective resolution of standard fluorescence microscopy
Requires chemical processing of the sample, not suitable for live samples
High resolution imaging of biological samples11
B
References1.Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US; 1994:1-21. doi:10.1007/978-1-4899-1513-9_12.Smith WJ. Modern Optical Engineering: The Design of Optical Systems. McGraw-Hill; 1990. ISBN: 00705917413.Shribak M, Inou S. Orientation-independent differential interference contrast microscopy. Collected Works of Shinya Inoue: Microscopes, Living Cells, and Dynamic Molecules. 2008;(Dic):953-962. doi:10.1142/9789812790866_00744.Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018;29(10):1475-1485. doi:10.1016/j.cclet.2018.07.0045.Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802-805. doi:10.1126/science.83032956.Baranov M V., Olea RA, van den Bogaart G. Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol. 2019;29(9):727-739. doi:10.1016/j.tcb.2019.05.0067.Miller DM, Shakes DC. Chapter 16 Immunofluorescence Microscopy. In: Current Protocols Essential Laboratory Techniques. Vol 10.; 1995:365-394. doi:10.1016/S0091-679X(08)61396-58.Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305(5686):1007-1009. doi:10.1126/science.11000359.Huisken J. Slicing embryos gently with laser light sheets. BioEssays. 2012;34(5):406-411. doi:10.1002/bies.20110012010.Fish KN. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr Protoc Cytom. 2009;50(1):273-275. doi:10.1002/0471142956.cy1218s5011.Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods. 2019;16(1):33-41. doi:10.1038/s41592-018-0219-412.Lam F, Cladire D, Guillaume C, Wassmann K, Bolte S. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope. Methods. 2017;115:17-27. doi: 10.1016/j.ymeth.2016.11.00313.Hedvat C V. Digital microscopy: past, present, and future. Arch Pathol Lab Med. 2010;134(11):1666-1670. doi: 10.5858/2009-0579-RAR1.114.Fatermans J, den Dekker AJ, Mller-Caspary K, et al. Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images. Phys Rev Lett. 2018;121(5):56101. doi:10.1103/PhysRevLett.121.05610115.Zhang C, Huber F, Knop M, Hamprecht FA. Yeast cell detection and segmentation in bright field microscopy. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI); 2014:1267-1270. doi:10.1109/ISBI.2014.686810716.Nair RR, Blake P, Grigorenko AN, et al. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008;320(5881):1308-1308. doi:10.1126/science.115696517.Xu D, He Y, Yeung ES. Direct Imaging of Transmembrane Dynamics of Single Nanoparticles with Darkfield Microscopy: Improved Orientation Tracking at Cell Sidewall. Anal Chem. 2014;86(7):3397-3404. doi:10.1021/ac403700u18.Neu-Baker NM, Dozier AK, Eastlake AC, Brenner SA. Evaluation of enhanced darkfield microscopy and hyperspectral imaging for rapid screening of TiO2 and SiO2 nanoscale particles captured on filter media. Microsc Res Tech. doi:10.1002/jemt.2385619.Li K, Miller ED, Weiss LE, Campbell PG, Kanade T. Online Tracking of Migrating and Proliferating Cells Imaged with Phase-Contrast Microscopy. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW06); 2006:65. doi:10.1109/CVPRW.2006.15020. McFadzean JA, Smiles J. Studies of Litomosoides carinii by Phase-contrast microscopy: the Development of the Larvae. J Helminthol. 1956;30(1):25-32. doi:10.1017/S0022149X0003294621.Sun W, Wang G, Fang N, Yeung ES. Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells. Anal Chem. 2009;81(22):9203-9208. doi: 10.1021/ac901623b22.Xiao L, Ha JW, Wei L, Wang G, Fang N. Determining the full three-dimensional orientation of single anisotropic nanoparticles by differential interference contrast microscopy. Angew Chemie Int Ed. 2012;51(31):7734-7738. doi: 10.1002/anie.20120234023.Wolman M, Kasten FH. Polarized light microscopy in the study of the molecular structure of collagen and reticulin. Histochemistry. 1986;85(1):41-49. doi:10.1007/BF0050865224.Slmov M, Oenek V, Vander Voort G. Polarized light microscopy: utilization in the investigation of the recrystallization of aluminum alloys. Mater Charact. 2004;52(3):165-177. doi:10.1016/j.matchar.2003.10.01025.Lichtman JW, Conchello J-A. Fluorescence microscopy. Nat Methods. 2005;2(12):910-919. doi:10.1038/nmeth81726.Franke W, Appelhans B, Schmid E, Freudenstein C, Osborn M, Weber K. Identification and characterization of epithelial cells in mammalian tissues by immunofluorescence microscopy using antibodies to prekeratin. Differentiation. 1979;15(1-3):7-25. doi:10.1111/j.1432-0436.1979.tb01030.x27.Seto S, Layh-Schmitt G, Kenri T, Miyata M. Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J Bacteriol. 2001;183(5):1621-1630. doi:10.1128/JB.183.5.1621-1630.200128.Pawley J, Pawley JB. Handbook of Biological Confocal Microscopy. 2006;(August 2010). doi:10.1007/978-0-387-45524-229.Ellis-Davies GCR. Two-Photon Microscopy for Chemical Neuroscience. ACS Chem Neurosci. 2011;2(4):185-197. doi:10.1021/cn100111a30.Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat methods. 2005;2(12):932-940. doi:10.1038/nmeth81831.Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct Funct. 2002;27(5):357-365. doi:10.1247/csf.27.35732.Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001;2(11):764-774. doi:10.1034/j.1600-0854.2001.21104.x
See the rest here:
- Technology | Define Technology at Dictionary.com [Last Updated On: March 25th, 2016] [Originally Added On: March 25th, 2016]
- Technology | Definition of Technology by Merriam-Webster [Last Updated On: March 25th, 2016] [Originally Added On: March 25th, 2016]
- Technology | Define Technology at Dictionary.com [Last Updated On: March 26th, 2016] [Originally Added On: March 26th, 2016]
- Technology | Definition of Technology by Merriam-Webster [Last Updated On: March 26th, 2016] [Originally Added On: March 26th, 2016]
- Technology Synonyms, Technology Antonyms | Thesaurus.com [Last Updated On: March 27th, 2016] [Originally Added On: March 27th, 2016]
- Technology News | Reuters.com [Last Updated On: March 27th, 2016] [Originally Added On: March 27th, 2016]
- Information technology - Wikipedia, the free encyclopedia [Last Updated On: March 27th, 2016] [Originally Added On: March 27th, 2016]
- Technology - Wikipedia, the free encyclopedia [Last Updated On: June 19th, 2016] [Originally Added On: June 19th, 2016]
- Technology Org - Science and technology news [Last Updated On: July 5th, 2016] [Originally Added On: July 5th, 2016]
- Technology - The Atlantic [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- NOAA Ocean Explorer: Technology [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- History of technology - Wikipedia, the free encyclopedia [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- Technology - Blue Sky Innovation - Chicago Tribune [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- Technology - Northern Illinois University [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- Technology Jobs - Monster.com [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- Urban Dictionary: technology [Last Updated On: January 5th, 2017] [Originally Added On: January 5th, 2017]
- IHS Technology The Source for Critical Information and ... [Last Updated On: January 5th, 2017] [Originally Added On: January 5th, 2017]
- Technology | NFL Football Operations [Last Updated On: January 5th, 2017] [Originally Added On: January 5th, 2017]
- Legaltech News - Law Technology News [Last Updated On: January 5th, 2017] [Originally Added On: January 5th, 2017]
- Reddit: Technology [Last Updated On: January 14th, 2017] [Originally Added On: January 14th, 2017]
- National Education Technology Plan - Office of Educational ... [Last Updated On: January 22nd, 2017] [Originally Added On: January 22nd, 2017]
- Technology: Industries: PwC [Last Updated On: January 22nd, 2017] [Originally Added On: January 22nd, 2017]
- Israeli technology let Super Bowl fans see plays at face mask level - Jerusalem Post Israel News [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Toyota, Suzuki to work together in green, safety technology - The Japan Times [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Aston Martin's architect on how to make technology beautiful - The Verge [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- How the New Fox Show APB Approaches Police Technology - Slate Magazine [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Prosthetic arm technology detects spinal nerve signals - Science Daily [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- In This Year's Super Bowl Of Technology, Intel Led The Way With A Sky Full Of Drones - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Learning From Last Year: Technology Funding Outlooks For 2017 - Forbes [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Technology - The New York Times [Last Updated On: February 6th, 2017] [Originally Added On: February 6th, 2017]
- Texas transportation leaders scramble to keep up with car technology - Fort Worth Star Telegram [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- What the Tech: Neuro-Bio Monitor Technology - KFDX [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- How Powerful AI Technology Can Lead to Unforeseen Disasters - Fortune [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Microsoft's AI group debuts customizable speech-to-text technology, rapidly expanding 'cognitive services' for ... - GeekWire [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- How 3-D technology helped surgeons separate conjoined twins - CNN [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- These Four Black Women Inventors Reimagined the Technology of the Home - Smithsonian [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Broadcaster dangles new technology for Winter Olympics - Reuters [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- A flare for self-destruction: How technology is the means, not the cause, of our demise - National Post [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- How 3D and Self-Design Will Change Technology - Huffington Post [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Republicans Aim to Kill Election Technology Standards Agency - Gizmodo [Last Updated On: February 7th, 2017] [Originally Added On: February 7th, 2017]
- Sean Spicer: Coal will be one of the cleanest uses of technology that we have - The Independent [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Is technology getting in the way of togetherness? - Las Vegas Weekly (blog) [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Panera surges to record as Wall Street eyes payoff from technology - Reuters [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Coming technology will likely destroy millions of jobs. Is Trump ready? - Washington Post [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- How Technology Transforms Dreamers Into Economic Powerhouses - Forbes [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- Technology Trends That Will Shape 2017 and Boost Your Company's UX - Entrepreneur [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- United Airlines Experiences Another Technology Glitch - Wall Street Journal [Last Updated On: February 9th, 2017] [Originally Added On: February 9th, 2017]
- A growing concern: Technology and transportation - Florida Today [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Aberdeen Oil and Gas Technology centre due to open - BBC News [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Opinion: Ethics should be front and center with technology but isn't always - The Mercury News [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Yes, there's a job creation argument for automation and technology - The Hill (blog) [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Nasdaq plans venture arm to invest in financial technology: sources ... - Reuters [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Volvo melds technology and luxury in the XC90 T8 hybrid - Engadget [Last Updated On: February 10th, 2017] [Originally Added On: February 10th, 2017]
- Our seas have become a plastic graveyard - but can technology turn the tide? - Telegraph.co.uk [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Technology identifying fastest checkout lanes comes to metro - KCCI Des Moines [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- This Technology Could Be a Game-Changer for the Marijuana Industry - Fox Business [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Small cell technology is large endeavor for state - Crain's Cleveland Business [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Grapevine: Technology at any age - Jerusalem Post Israel News [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- Feeling Tied to Technology? Neuroscientist Offers Tips to Focus and Recharge Your Brain - whotv.com [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- The technology fixing Britain's parking problem - The Independent [Last Updated On: February 12th, 2017] [Originally Added On: February 12th, 2017]
- DHS Developing Technology to Identify Terrorist Travelers - Breitbart News [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- New technology has display designers thinking outside the rectangle - The Japan Times [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Graph Technology A Data Standby By For Every Fortune 500 Company - Computer Business Review [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Tesla obtains patent for charging metal-air battery technology that could enable longer range - Electrek [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Tim Cook: Augmented Reality is as big of a technology as the smartphone - BGR [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Franklin County's 911 centers sharing technology to receive texts - Columbus Dispatch [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- A New Angel Investing Platform Connects Deep Technology And Science Startups With Capital - Forbes [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- How technology is encouraging society to be stupid - The Next Web [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- Technology puts 'touch' into long-distance relationships - Phys.Org [Last Updated On: February 13th, 2017] [Originally Added On: February 13th, 2017]
- VW plans to use Mobileye sensing and localization technology - Automotive News (subscription) (blog) [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- How dangerous is technology? - OUPblog (blog) [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Valentine's day: what's your secret technology crush? - Naked Security [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Johnston educators among presenters at technology conference - News & Observer [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Is Magic Leap Lying About Its Acid Trip Technology? - Vanity Fair [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- A look at North Korea's missile launches and technology - ABC News [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Parents and technology How much is too much? - WGBA-TV [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Apple's Eddy Cue says technology companies have a responsibility to combat fake news - Recode [Last Updated On: February 14th, 2017] [Originally Added On: February 14th, 2017]
- Statistical agencies looking to C-suite, new digital tools to address biggest challenges - FederalNewsRadio.com [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Even Indian technology entrepreneurs think they are living in a bubble - Quartz [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]
- Is Hyperloop transportation technology coming to India? - YourStory.com [Last Updated On: February 15th, 2017] [Originally Added On: February 15th, 2017]