Untethered soft actuators for soft standalone robotics – Nature.com

Posted: May 1, 2024 at 11:21 am

Hawkes, E. W., Blumenschein, L. H., Greer, J. D. & Okamura, A. M. A soft robot that navigates its environment through growth. Sci. Robot. 2, eaan3028 (2017).

Article PubMed Google Scholar

Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).

Article PubMed Google Scholar

Hao, Y., Gao, J., Lv, Y. & Liu, J. Low melting point alloys enabled stiffness tunable advanced materials. Adv. Funct. Mater. 32, 2201942 (2022).

Article CAS Google Scholar

Gao, M., Meng, Y., Shen, C. & Pei, Q. Stiffness variable polymers comprising phasechanging sidechains: material syntheses and application explorations. Adv. Mater. 34, 2109798 (2022).

Article CAS Google Scholar

Tetsuka, H., Pirrami, L., Wang, T., Demarchi, D. & Shin, S. R. Wirelessly powered 3D printed hierarchical biohybrid robots with multiscale mechanical properties. Adv. Funct. Mater. 32, 2202674 (2022).

Article CAS PubMed PubMed Central Google Scholar

Nardekar, S. S. & Kim, S. J. Untethered magnetic soft robot with ultraflexible wirelessly rechargeable microsupercapacitor as an oboard power source. Adv. Sci. 10, 2303918 (2023).

Article CAS Google Scholar

Li, Y. et al. Multidegreeoffreedom robots powered and controlled by microwaves. Adv. Sci. 9, 2203305 (2022).

Article CAS Google Scholar

Iyer, V., Najafi, A., James, J., Fuller, S. & Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robot. 5, eabb0839 (2020).

Article PubMed Google Scholar

Yang, H. et al. Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Sci. Robot. 4, eaax7020 (2019).

Article PubMed Google Scholar

Ozaki, T., Ohta, N., Jimbo, T. & Hamaguchi, K. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845852 (2021).

Article Google Scholar

Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235249 (2022).

Article ADS CAS PubMed Google Scholar

El-Atab, N. et al. Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2, 2000128 (2020).

Article Google Scholar

Guo, Y., Liu, L., Liu, Y. & Leng, J. Review of dielectric elastomer actuators and their applications in soft robots. Adv. Intell. Syst. 3, 2000282 (2021).

Article Google Scholar

Rich, S. I., Wood, R. J. & Majidi, C. Untethered soft robotics. Nat. Electron. 1, 102112 (2018).

Article Google Scholar

Kim, H. et al. Shape morphing smart 3D actuator materials for micro soft robot. Mater. Today 41, 243269 (2020).

Article CAS Google Scholar

Zhao, Y. et al. Physically intelligent autonomous soft robotic maze escaper. Sci. Adv. 9, eadi3254 (2023).

Article PubMed PubMed Central Google Scholar

Ng, C. S. X. et al. Locomotion of miniature soft robots. Adv. Mater. 33, 2003558 (2021).

Article CAS Google Scholar

Li, G. et al. Self-powered soft robot in the mariana trench. Nature 591, 6671 (2021).

Article ADS CAS PubMed Google Scholar

Runciman, M., Darzi, A. & Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft Robot. 6, 423443 (2019).

Article PubMed PubMed Central Google Scholar

Xu, S. et al. A dynamic electrically driven soft valve for control of soft hydraulic actuators. Proc. Natl Acad. Sci. 118, e2103198118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Ge, L., Dong, L., Wang, D., Ge, Q. & Gu, G. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sens. Actuators A: Phys. 273, 285292 (2018).

Article CAS Google Scholar

Li, H. et al. High-force soft pneumatic actuators based on novel casting method for robotic applications. Sens. Actuators A: Phys. 306, 111957 (2020).

Article ADS CAS Google Scholar

Bira, N., Meng, Y. & Davidson, J. R. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2020).

Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 6165 (2018). This study presents muscle-mimetic soft actuators that harness electrostatic and hydraulic mechanism using liquid dielectric material.

Article ADS CAS PubMed Google Scholar

Mitchell, S. K. et al. An easytoimplement toolkit to create versatile and highperformance HASEL actuators for untethered soft robots. Adv. Sci. 6, 1900178 (2019).

Article Google Scholar

Zhang, Y. F. et al. Miniature pneumatic actuators for soft robots by highresolution multimaterial 3D printing. Adv. Mater. Technol. 4, 1900427 (2019).

Article Google Scholar

Leroy, E., Hinchet, R. & Shea, H. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32, 2002564 (2020).

Article CAS Google Scholar

Bell, M. A., Gorissen, B., Bertoldi, K., Weaver, J. C. & Wood, R. J. A modular and selfcontained fluidic engine for soft actuators. Adv. Intell. Syst. 4, 2100094 (2022).

Article Google Scholar

Zatopa, A., Walker, S. & Menguc, Y. Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots. Soft Robot. 5, 258271 (2018).

Article PubMed Google Scholar

Lin, Y., Xu, Y.-X. & Juang, J.-Y. Single-actuator soft robot for in-pipe crawling. Soft Robot. 10, 174186 (2023).

Article PubMed Google Scholar

Chee, P. S., Minjal, M. N., Leow, P. L. & Ali, M. S. M. Wireless powered thermo-pneumatic micropump using frequency-controlled heater. Sens. Actuators A: Phys. 233, 18 (2015).

Article CAS Google Scholar

Han, J. et al. Untethered soft actuators by liquidvapor phase transition: remote and programmable actuation. Adv. Intell. Syst. 1, 1900109 (2019).

Article Google Scholar

Byun, J. et al. Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter. Sci. Robot. 6, eabe0637 (2021).

Article PubMed Google Scholar

Yoon, Y. et al. Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 451, 138794 (2023).

Article CAS Google Scholar

Lee, J. et al. Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv. Intell. Syst. 4, 2100271 (2022).

Article Google Scholar

Kang, B., Lee, Y., Piao, T., Ding, Z. & Wang, W. D. Robotic soft swim bladder using liquidvapor phase transition. Mater. Horiz. 8, 939947 (2021).

Article CAS PubMed Google Scholar

Li, M. et al. Miniature coiled artificial muscle for wireless soft medical devices. Sci. Adv. 8, eabm5616 (2022).

Article PubMed PubMed Central Google Scholar

Mirvakili, S. M., Sim, D., Hunter, I. W. & Langer, R. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Robot. 5, eaaz4239 (2020).

Article PubMed Google Scholar

Tang, Y. et al. Wireless miniature magnetic phasechange soft actuators. Adv. Mater. 34, 2204185 (2022).

Article CAS Google Scholar

Diteesawat, R. S., Helps, T., Taghavi, M. & Rossiter, J. Electro-pneumatic pumps for soft robotics. Sci. Robot. 6, eabc3721 (2021).

Article PubMed Google Scholar

Matia, Y., An, H. S., Shepherd, R. F. & Lazarus, N. Magnetohydrodynamic levitation for high-performance flexible pumps. Proc. Natl Acad. Sci. 119, e2203116119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Xu, S., Nunez, C. M., Souri, M. & Wood, R. J. A compact DEA-based soft peristaltic pump for power and control of fluidic robots. Sci. Robot. 8, eadd4649 (2023).

Article PubMed Google Scholar

Feng, M., Yang, D., Majidi, C. & Gu, G. Highspeed and lowenergy actuation for pneumatic soft robots with internal exhaust air recirculation. Adv. Intell. Syst. 5, 2200257 (2023).

Article Google Scholar

Tse, Y. A., Wong, K. W., Yang, Y. & Wang, M. Y. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020).

Sun, J., Zhou, D., Deng, J. & Liu, Y. Development of a high flow rate soft pump driven by intersected twisted artificial muscles units. IEEE Trans. Ind. Electron. 70, 71537162 (2022).

Article Google Scholar

Zhang, W. H., Qin, L., Wang, J. Y. & Xu, W. Design of squeezing-tube-driven pump for soft pneumatic robotics based on spiral spring winding. Appl. Phys. Letters 122, 093702 (2023).

Cacucciolo, V. et al. Stretchable pumps for soft machines. Nature 572, 516519 (2019).

Article ADS CAS PubMed Google Scholar

Tang, W. et al. Customizing a self-healing soft pump for robot. Nat. Commun. 12, 2247 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Qi, J., Gao, F., Sun, G., Yeo, J. C. & Lim, C. T. HaptGloveuntethered pneumatic glove for multimode haptic feedback in realityvirtuality continuum. Adv. Sci. 10, 2301044 (2023).

Lin, D., Yang, F., Gong, D. & Li, R. Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nat. Commun. 14, 163 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Shao, Y. et al. 4D printing light-driven soft actuators based on liquid-vapor phase transition composites with inherent sensing capability. Chem. Eng. J. 454, 140271 (2023).

Article CAS Google Scholar

Fischer, P. & Ghosh, A. Magnetically actuated propulsion at low reynolds numbers: towards nanoscale control. Nanoscale 3, 557563 (2011).

Article ADS CAS PubMed Google Scholar

Go here to see the original:

Untethered soft actuators for soft standalone robotics - Nature.com

Related Posts