By now, just about everyone knows about black holes: the all-consuming regions in outer space that are so dense that not even light can escape from their mysterious interior. But those are only one kind of black hole, even if they are the most famous of the bunch.
There can be other kinds of black holes that trap other physical phenomena, like sound waves, and these kinds of black holes, known as sonic black holes, might be critical to understanding their light-consuming counterparts in the wider universe.
Most important of all, what can sonic black holes tell us about one of modern physics' most contentious debates, the so-called Information Paradox? A recent study attempted to find out, and its results seem to make the problem more complicated, not less.
One commonly-known understanding about black holes is that whatever falls into a black hole doesn't come back out, not even light. But in 1971, physicist Steven Hawking proposed an interesting theory, which set off a series of discussions that changed the way physicists looked at black holes. He predicted that the total area of a black holes event horizon would never decrease. This statement is similar to the second law of thermodynamics, which states that the entropy, or degree of disorder within an object, should also never decrease.
Hawking's theory suggested that black holes could behave as thermal, heat-emitting objects in contradiction to the normal understanding of black holes as objects which never let energy escape. In 1974, Hawking proposed a solution to this contradiction by showing that,over exceptionally long timescales, black holes could have both entropy and emit radiation by taking into account their quantum effects. This phenomenon was dubbed Hawking radiation.
Hawking argued that black holes were actually acting as an idealized black body in space that absorbed all wavelengths of light, but which emitted energy calledblack body radiation, orHawking radiation, all along the event horizon.
That is because of virtual particles matter and anti-matter particles that momentarily spawn in space out of nothing and due to their proximity to each other immediately annihilate each other and release the energy used to produce them in the first place. This maintains the vital law of thermodynamics that states that the energy of a closed system (the universe) must remain constant.
But, if a pair of virtual particles spawn along the edge of an event horizon, one of the two particles will get sucked into the black hole, while the remaining particle survives and flies away into space as a form of energy known as Hawking radiation.
You can see the problem, right? The universe just took some of its energy and created matter out of nothing, but didn't get that energy back.
The only way Hawking radiation could be allowed to exist mathematically is if the in-falling particle actually had negative energy equal in magnitude to the positive energy used to create the two particles, thereby preserving the universe's total energy.
This leads to another problem though, as that particle falling into the black hole is now a part of it, and so the negative energy balance of the particle is taken out of the energy of the black hole.
It might be slight, all things considered, but if a black hole doesn't accrete any additional material to itself, all of those infinitesimally small energy deductions will start reducing the black hole's mass. Given enough time, the black hole actually evaporates out of existence.
You might be asking why that's a problem after all, that's one less black hole to accidentally run into out there but the problem is that particles aren't just matter, they also carry quantum information, such as position, spin, and velocity.
Quantum mechanics as we know it requires that this information, just like the energy of the universe, must be preserved. It might be scrambled beyond all recognition, but there's nothing in physics that says you can't go back and undo that scrambling and reclaim that information unless it was either inside a black hole or encoded into its event horizon when that black hole winked out of existence, thus taking that information with it.
What happens to that quantum information is the heart of the Information Paradox, and physicists and philosophers have been trying to untangle it ever since to no avail.
To understand a sonic black hole, let's review the physics of a traditional black hole in space. Gravity is the warping in the fabric of spacetime that is caused by an object's mass. That warping can be envisioned as a sloped well with the object at the bottom, pulling down and stretching the fabric below the plane of unaffected space-time.
In order to climb out of that well, you need to reach a certain speed, known as escape velocity. So, in order to escape the gravity well of Earth, you need to travel about 6.95 miles per second (11.19 m/s), or a little over 25,020 mph (about 40,270 km/h). Anything less, and you'll fall back down to Earth eventually.
The only thing that makes black holes different in this sense is that a black hole's escape velocity exceeds the speed of light. So, like a rocket that is only going 6.8 miles per second, light can get very high up the slope of a relatively small black hole's gravity well, but just not enough to get fully out of it.
In effect, the light would enter into a decaying orbit as it slowly spirals back down the center, like a bit of dirt caught in the whirlpool at the bottom of a drain in a bathtub. The more massive the black hole, the higher the slope of that well, so that light might barely be able to climb it at all.
A sonic black hole then, is this exact same phenomenon, except where the escape velocity of an object exceeds the speed of sound, rather than the speed of light. Fortunately, the speed of sound is much, much lower than the speed of light, so at sea level with a temperature of 59 degrees Fahrenheit (15 degrees Celsius), sound travels at 761 miles per hour (about 1224.74 km/h).
All an object (at sea level and at 59 degrees Fahrenheit) would needis an escape velocity infinitesimally greater than 761 miles per hour and it could prevent sound from escaping its event horizon, just as sure as its space-dwelling counterparts trap light.
Since sonic black holes and light black holes both have this basic property around their escape velocities, there is a lot of interest around whether we can use sonic black holes to effectively model the light-consuming black holes we find in space.
This is especially important since it's impossible to actually measure Hawking radiation, since we'd be talking about individual photons appearing just outside an event horizon. These would be too faint to ever detect without, say,surrounding a black hole in a super-cold Dyson Sphere-like detector that blocks out any outside radiation and which emits less energy than the black hole does itself.
So, the only way to really test for Hawking radiation is to find analogies that we can actually create and measure, which is where sonic black holes come in. Since a sonic black hole with its own event horizon for sound energy is something that we can create in a lab, can it give us insight into Hawking radiation?
A key feature of these sonic black holes is that they are just as immersed in the quantum field of the universe as a supermassive black hole at the center of a galaxy, so virtual particles will be constantly popping in and out of existence throughout, including phonons, which are quantum units of sound equivalent to light's photons.
An Israeli research team created one such sonic black hole using about 8,000rubidium atoms cooled to nearly absolute zero and trapped in place with a laser beam to create aBose-Einstein Condensate (BEC), in which atoms become so densely packed they behave like one super atom.
The team then used a second laser beam to create an effectiveevent horizon, where one half of the BEC was flowing faster than thespeed of sound, while the other half moved slower.
What the team from Technion in Haifa, Israel, led by Jeff Steinhauer, found is that pairs of phonons (quantum sound waves) did in fact appear on either side of the sonic event horizon, with the pair in the slower half getting swept away from the "event horizon" andthe phonon on the faster half became trapped by the speed of the supersonic flowing BEC, just as Hawking predicted a photon would from the event horizon of a black hole in space.
In a study the team published in January 2021 in the journal Nature, the team reported that theyobserved spontaneous Hawking radiation at six different times after the formation of the sonic black hole, and verified that the temperature and strength of the radiation remained constant. The evolution of the Hawking radiation throughout the life of the sonic black hole also compared to thepredictions for real black holes.The experiment provided experimental support to Hawkings analysis.
However, an inner horizon formed within the sonic black hole, in which the sound waves are no longer trapped. This inner horizon stimulated additional Hawking radiation, beyond the spontaneous emission.This phenomenon was not included in Hawkings analysis.
Not everyone is convinced that the two types of black holes are truly analogous, however.
A key point of contention is that Hawking speculates that all along the event horizon of a black hole, spacetime can be considered smooth; this is essential for the creation of Hawking radiation.
If spacetime around the event horizon is not smooth, however, quantum-scale variations could be encoding information into Hawking radiation in ways we can't detect.
What's more, the fact that sonic black holes and the Hawking radiation they produce behave a certain way does not prove that the light-trapping black holes in space that they are attempting to model will also behave in the same fashion.
In the Steinhauer team's recent experiment, the sonic black hole collapsedevery time they took a picture, due to the heat created in the process (the team repeated their experiment 97,000 times over 124 days to come up with the results in their paper). Therubidium atoms didn't disappear in the collapse, though; they remained, as did whatever quantum information the infalling phonon imprinted on them. This information can still, theoretically, be extracted even now.
What's more, even though a sonic black hole behaves the same way in one regard, the creation of an event horizon that produces a form of Hawking radiation, it might be too reductive to say that sharing a surface-level characteristic makes the two identical on more fundamental levels. A collection of 8,000 rubidium atoms in a BEC is not the same thing as a spacetime singularity of infinite density where physics as we know it breaks down. An analogy is just an analogy, after all.
Still, this recent experiment does provide some evidence that information that falls into a black hole is permanently lost when the black hole evaporates from Hawking radiation, so that raises the question of what would happen if this fundamental premise of quantum mechanics turned out to be incorrect?
A key principle of classical physics is that having a perfect knowledge of the state of all the particles of the universe should give you the ability to predict the future state of the universe at any given point in the future (at least theoretically).
Physics does not require that having such perfect knowledge of a current state gives you that same predictive ability about the past. If two different states (A and B) both lead to the same state (C), then you can know that having A and B will give you C and C, but having C by itself can't tell you whether you started with A, with B, or with both. That quantum information would be lost forever when A and B make the transition to state C.
Quantum mechanics forbids this loss of information, however, owing to the principle of unitarity, which essentially means that all probabilities of any given quantum state must sum to 1.
If we look at a six-sided die, the probability of getting a value between 1 and 6, inclusive, are all 1/6. But the probability of getting anyvalue is 1, which is the sum of all six probabilities of 1/6.
A six-sided die can't also become a five-sided die simply because it is rolled, all six sides of the die must remain intact during the transition between quantum states, so that two quantum states cannot become the same quantum state, they must remain separate and distinct.
Losing quantum information then is like taking one of those probabilities off the board, so rather than adding six values of 1/6 together, you add five of them and end up with 5/6 rather than 1. If this were possible, thenthe Schrodinger equation is wrong, the wave function is wrong, essentially the entire foundation of quantum mechanics is a lie and nothing is as it appears to be, even if a century of work in quantum mechanics tells us otherwise.
This is why the Information Paradox is such a thorny problem, since even though something as simple as permanently losing the knowledge of the spin of a virtual particle as it falls into a black hole might not seem like it should matter, it alters and unbalances the probabilities of the universe that quantum mechanics relies on, turning it from science to just really good guessing, and no one likes being told that they're just making stuff up.
There have been all sorts of proposed solutions to the information paradox over the years, and none have really settled the issue. Sonic black holes aren't likely to do so either, though they're still a pretty cool attempt regardless.
See more here:
What Sonic Black Holes Can Teach Us About the Information Paradox - Interesting Engineering
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]