image:The Oleynik team simulated a split elastic-inelastic shock wave moving through a single crystal diamond. view more
Credit: Jonathan Willman, Materials Simulation Laboratory, Oleyniks Group at USF
Are diamonds even stronger than weve ever imagined? Can other post-diamond phases appear when diamond is subjected to extreme pressures? A team used machine-learned descriptions of interatomic interactions on the 200-petaflop Summit supercomputer at theUS Department of Energys (DOEs)Oak Ridge National Laboratory(ORNL) to model more than a billion carbon atoms at quantum accuracy and observe how diamonds behave under some of the most extreme pressures and temperatures imaginable. The results are nothing short of incredible.
The team was led by scientists at the University of South Florida (USF), DOEs Sandia National Laboratories (Sandia), DOEsNational Energy Research Scientific ComputingCenter(NERSC), and the NVIDIA Corporation. The researchers found that under extreme conditions, a shock wave strongly compresses the diamond as it passes through and forces it to crack under the pressure.
The study will help scientists better understand how carbon behaves under extreme conditions. This understanding is crucial for inertial confinement fusion, in which hydrogen fuel is kept inside a diamond capsule and nuclear fusion reactions are initiated by compressing the collapsing diamond shell. It is also important for uncovering the internal structure of carbon-rich planetslike Uranusand carbon-rich exoplanets. Exoplanets exist around stars outside of our solar system, and observations suggest they can be rich in diamond and silica.
Observations have shown that some exoplanets consist of carbon-rich constituents, such as methane, which, upon compression, convert to diamond, said Ivan Oleynik, a professor of physics at USF and principal investigator on the project. To understand the structure of these exoplanets, scientists need to understand the behavior of carbon at extreme conditions.
Scientists had believed that under extreme temperatures and pressures, diamond can experience plasticity similar to metals. But as it turns out, diamond experiences a brittle behavior while sustaining its exceptional strength. The team found that these cracks are healed through the formation of amorphous carbon. This carbon is eventually converted into regions of hexagonal diamond, thus explaining the underlying mechanism of diamonds strength.
For this work, the team has been named a finalist for the Association for Computing Machinery Gordon Bell Prize. This prize has been awarded each year since 1987 at theInternational Conference for High-Performance Computing, Networking, Storage and Analysis(SC). It recognizes outstanding achievements inapplying high-performance computing (HPC) to challenges in science, engineering, and large-scale data analytics. The teamsresults will be presented at SC21, to be held November 1419, 2021, in St. Louis, MO.
Diamonds take the heat
Experiments at SandiasZ Pulsed Power Facilityand at Lawrence Livermore National Laboratory (LLNL)facilities capable of creating tens of millions of atmospheres, or 100s of millions of pounds per square inchhave shown that diamond retains extremely high strength even when subjected to enormous compression and heating. It retains this strength up to the state when it should start melting. These experiments involved pressures above several million atmospheres. However, there has been controversy around what actually happens to diamonds under such extreme pressures.
When you load diamond with enormous pressure, it was assumed to turn into a plastic-like state. But we know diamonds are brittle and dont behave in this way, Oleynik said. Our simulations have uncovered an unexpected mechanism of inelastic deformations. Diamond cracks when it is compressed by the enormous shock waves generated at these gigantic compression facilities. These cracks are then reformed during an amorphous-like carbon state inside these cracks. They are then followed by recrystallization into hexagonal stacking faults where the atomic planes are shifted, compared with those in ideal diamond crystals.
Under such extreme conditions, atoms are squeezed together so tightly that only quantum mechanics, which describes how materials behave at the atomic scale, can provide a sufficiently detailed picture of how they interact with one another. But using quantum mechanics to study the dynamics of atoms is computationally expensive.
If you want to simulate something approaching experimental length and timescales, such as micrometers and nanoseconds, you need millions and even billions of atoms and millions of molecular dynamics time steps. But with quantum mechanics, the largest amount of particles you can do is no more than 1,000 atoms. And the largest number of steps is 10,000.
The team made a major breakthrough in describing with quantum accuracy how carbon atoms interact under such enormous pressure and temperature. The team fingerprinted each atom in a diamond using a set of so-calleddescriptors, which were then used to construct an accurate representation of the systems potential energy using powerful machine-learning techniques. This innovative machine-learning approach enabled the team to make predictions of atomic-scale dynamics for a billion atoms to within 3 percent accuracy when compared with extremely precise quantum mechanical calculations.
GPUs illuminate new diamond properties
PhD student Jonathan Willman and postdoctoral associate Kien Nguyen-Cong, both in Oleyniks group at USF, performed the simulations on Summit using a billion-atom sample on the full machine for 24 hours.
Simulating billions of atoms at this nanometer timescale could only be done on Summit. GPU acceleration was the key to achieving these results, Oleynik said. Our team made a major algorithmic breakthrough that allowed our GPU-enabled code to run one hundred times faster than it does on CPU-only machines.
In these billion-atom simulations, the team observed for the first time the shock wave propagation in micrometer-thick diamond at fine resolution, down to the atomic scale. This allowed the team to observe details of diamond cracking and reforming, as well as complex interference patterns created by multiple local sound waves initiated at the crack tips.
We couldnt see this before because we had never done such grand-scale simulations, Oleynik said. The cross section of the diamond sample the team used in simulations is 100 by 100 nanometers and 1 micronor 1,000 nanometersin length.
Running the simulations at such a grand scale is important because now we can achieve high fidelity, and we can say for certain that our results are close to reality, Oleynik said.
Reaching an unknown phase of carbon
Thanks to Summit, the team also has a better understanding of why diamonds havent been transformed to the so-called BC8 high-pressure, post-diamond phase in billion-dollar experiments at the National Ignition Facility (NIF) at LLNL.
These experiments pursued conventional thinking of concerted transformation of atoms from a diamond lattice to that of the BC8 phase. This phase transition requires overcoming an enormous energy, Oleynik said. Our hypothesis, which was brilliantly confirmed in our billion-atom simulations, is that the liquid-like, amorphous carbon can facilitate the nucleation of the BC8 phase. This provides a viable pathway for synthesis of this post-diamond phase. Within the NIF Discovery Science program, we are working with our experimental collaborators to confirm our predictions.
The team plans to extend their simulations to even bigger, trillion-atom systems using emerging exascale HPC systems. These include the nations first exascale supercomputer,Frontierat theOak Ridge Leadership Computing Facility(OLCF), a DOEOffice of Scienceuser facility located at ORNL.
Such tour de force simulations will provide even deeper insight into mystery ofdiamond rainupon compression of methane inside of ice giants Uranus and Neptune, Oleynik said. The beauty of these simulations is that we can see how nature responds to these extreme pressures and temperatures at the atomic level. We can also see how individual atomic motions combine together in a collective macroscopic behavior, which can then be observed in state-of-the art experiments.
The team members include Jonathan Willman, Kien Nguyen-Cong, and Ivan Oleynik from USF; Stan Moore, Mitchell Wood, and Aidan Thompson from Sandia; Rahulkumar Gayatri from NERSC; and Evan Weinberg from the NVIDIA Corporation.
Sandia is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for DOEs National Nuclear Security Administration (NNSA).
The research is supported byNNSA; the Exascale Computing Project, a collaborative effort of the DOEs Office of Science and NNSA; and DOEs Advanced Scientific Computing Research Leadership Computing Challenge and Innovative and Novel Computational Impact on Theory and Experiment awards. This research used resources of NERSC and the OLCF.
Related Publication:Nguyen-Cong, Kien, Jonathan T. Willman, Stan G. Moore, Anatoly B. Belonoshko, Rahulkumar Gayatri, Evan Weinberg, Mitchell A. Wood, Aidan P. Thompson, and Ivan I. Oleynik. Billion Atom Molecular Dynamics Simulations of Carbon at Extreme Conditions and Experimental Time and Length Scales. Paper to be presented at SC21: The International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, MO, November 2021.
Computational simulation/modeling
Not applicable
See the original post:
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]