Quantum physics is usually just intimidating from the get-go. It's kind of weird and can seem counter-intuitive, even for the physicists who deal with it every day. But it's not incomprehensible. If you're reading something about quantum physics, there are really six key concepts about it that you should keep in mind. Do that, and you'll find quantum physics a lot easier to understand.
Everything Is Made Of Waves; Also, Particles
Light as both a particle and a wave. (Image credit: Fabrizio Carbone/EPFL)
There's lots of places to start this sort of discussion, and this is as good as any: everything in the universe has both particle and wave nature, at the same time. There's a line in Greg Bear's fantasy duology (The Infinity Concerto and The Serpent Mage), where a character describing the basics of magic says "All is waves, with nothing waving, over no distance at all." I've always really liked that as a poetic description of quantum physics-- deep down, everything in the universe has wave nature.
Of course, everything in the universe also has particle nature. This seems completely crazy, but is an experimental fact, worked out by a surprisingly familiar process:
(there's also an animated version of this I did for TED-Ed).
Of course, describing real objects as both particles and waves is necessarily somewhat imprecise. Properly speaking, the objects described by quantum physics are neither particles nor waves, but a third category that shares some properties of waves (a characteristic frequency and wavelength, some spread over space) and some properties of particles (they're generally countable and can be localized to some degree). This leads to some lively debate within the physics education community about whether it's really appropriate to talk about light as a particle in intro physics courses; not because there's any controversy about whether light has some particle nature, but because calling photons "particles" rather than "excitations of a quantum field" might lead to some student misconceptions. I tend not to agree with this, because many of the same concerns could be raised about calling electrons "particles," but it makes for a reliable source of blog conversations.
This "door number three" nature of quantum objects is reflected in the sometimes confusing language physicists use to talk about quantum phenomena. The Higgs boson was discovered at the Large Hadron Collider as a particle, but you will also hear physicists talk about the "Higgs field" as a delocalized thing filling all of space. This happens because in some circumstances, such as collider experiments, it's more convenient to discuss excitations of the Higgs field in a way that emphasizes the particle-like characteristics, while in other circumstances, like general discussion of why certain particles have mass, it's more convenient to discuss the physics in terms of interactions with a universe-filling quantum field. It's just different language describing the same mathematical object.
Quantum Physics Is Discrete
These oscillations created an image of "frozen" light. (Credit: Princeton)
It's right there in the name-- the word "quantum" comes from the Latin for "how much" and reflects the fact that quantum models always involve something coming in discrete amounts. The energy contained in a quantum field comes in integer multiples of some fundamental energy. For light, this is associated with the frequency and wavelength of the light-- high-frequency, short-wavelength light has a large characteristic energy, which low-frequency, long-wavelength light has a small characteristic energy.
In both cases, though, the total energy contained in a particular light field is an integer multiple of that energy-- 1, 2, 14, 137 times-- never a weird fraction like one-and-a-half, , or the square root of two. This property is also seen in the discrete energy levels of atoms, and the energy bands of solids-- certain values of energy are allowed, others are not. Atomic clocks work because of the discreteness of quantum physics, using the frequency of light associated with a transition between two allowed states in cesium to keep time at a level requiring the much-discussed "leap second" added last week.
Ultra-precise spectroscopy can also be used to look for things like dark matter, and is part of the motivation for a low-energy fundamental physics institute.
This isn't always obvious-- even some things that are fundamentally quantum, like black-body radiation, appear to involve continuous distributions. But there's always a kind of granularity to the underlying reality if you dig into the mathematics, and that's a large part of what leads to the weirdness of the theory.
Quantum Physics Is Probabilistic
(Credit: Graham Barclay/Bloomberg News)
One of the most surprising and (historically, at least) controversial aspects of quantum physics is that it's impossible to predict with certainty the outcome of a single experiment on a quantum system. When physicists predict the outcome of some experiment, the prediction always takes the form of a probability for finding each of the particular possible outcomes, and comparisons between theory and experiment always involve inferring probability distributions from many repeated experiments.
The mathematical description of a quantum system typically takes the form of a "wavefunction," generally represented in equations by the Greek letter psi:. There's a lot of debate about what, exactly, this wavefunction represents, breaking down into two main camps: those who think of the wavefunction as a real physical thing (the jargon term for these is "ontic" theories, leading some witty person to dub their proponents "psi-ontologists") and those who think of the wavefunction as merely an expression of our knowledge (or lack thereof) regarding the underlying state of a particular quantum object ("epistemic" theories).
In either class of foundational model, the probability of finding an outcome is not given directly by the wavefunction, but by the square of the wavefunction (loosely speaking, anyway; the wavefunction is a complex mathematical object (meaning it involves imaginary numbers like the square root of negative one), and the operation to get probability is slightly more involved, but "square of the wavefunction" is enough to get the basic idea). This is known as the "Born Rule" after German physicist Max Born who first suggested this (in a footnote to a paper in 1926), and strikes some people as an ugly ad hoc addition. There's an active effort in some parts of the quantum foundations community to find a way to derive the Born rule from a more fundamental principle; to date, none of these have been fully successful, but it generates a lot of interesting science.
This is also the aspect of the theory that leads to things like particles being in multiple states at the same time. All we can predict is probability, and prior to a measurement that determines a particular outcome, the system being measured is in an indeterminate state that mathematically maps to a superposition of all possibilities with different probabilities. Whether you consider this as the system really being in all of the states at once, or just being in one unknown state depends largely on your feelings about ontic versus epistemic models, though these are both subject to constraints from the next item on the list:
Quantum Physics Is Non-Local
A quantum teleportation experiment in action. (Credit: IQOQI/Vienna)
The last great contribution Einstein made to physics was not widely recognized as such, mostly because he was wrong. In a 1935 paper with his younger colleagues Boris Podolsky and Nathan Rosen (the "EPR paper"), Einstein provided a clear mathematical statement of something that had been bothering him for some time, an idea that we now call "entanglement."
The EPR paper argued that quantum physics allowed the existence of systems where measurements made at widely separated locations could be correlated in ways that suggested the outcome of one was determined by the other. They argued that this meant the measurement outcomes must be determined in advance, by some common factor, because the alternative would require transmitting the result of one measurement to the location of the other at speeds faster than the speed of light. Thus, quantum mechanics must be incomplete, a mere approximation to some deeper theory (a "local hidden variable" theory, one where the results of a particular measurement do not depend on anything farther away from the measurement location than a signal could travel at the speed of light ("local"), but are determined by some factor common to both systems in an entangled pair (the "hidden variable")).
This was regarded as an odd footnote for about thirty years, as there seemed to be no way to test it, but in the mid-1960's the Irish physicist John Bell worked out the consequences of the EPR paper in greater detail. Bell showed that you can find circumstances in which quantum mechanics predicts correlations between distant measurements that are stronger than any possible theory of the type preferred by E, P, and R. This was tested experimentally in the mid-1970's by John Clauser, and a series of experiments by Alain Aspect in the early 1980's is widely considered to have definitively shown that these entangled systems cannot possibly be explained by any local hidden variable theory.
The most common approach to understanding this result is to say that quantum mechanics is non-local: that the results of measurements made at a particular location can depend on the properties of distant objects in a way that can't be explained using signals moving at the speed of light. This does not, however, permit the sending of information at speeds exceeding the speed of light, though there have been any number of attempts to find a way to use quantum non-locality to do that. Refuting these has turned out to be a surprisingly productive enterprise-- check out David Kaiser's How the Hippies Saved Physics for more details. Quantum non-locality is also central to the problem of information in evaporating black holes, and the "firewall" controversy that has generated a lot of recent activity. There are even some radical ideas involving a mathematical connection between the entangled particles described in the EPR paper and wormholes.
Quantum Physics Is (Mostly) Very Small
Images of a hydrogen atom as seen through a quantum telescope. (Credit: Stodolna et al. Phys. Rev.... [+] Lett.)
Quantum physics has a reputation of being weird because its predictions are dramatically unlike our everyday experience (at least, for humans-- the conceit of my book is that it doesn't seem so weird to dogs). This happens because the effects involved get smaller as objects get larger-- if you want to see unambiguously quantum behavior, you basically want to see particles behaving like waves, and the wavelength decreases as the momentum increases. The wavelength of a macroscopic object like a dog walking across the room is so ridiculously tiny that if you expanded everything so that a single atom in the room were the size of the entire Solar System, the dog's wavelength would be about the size of a single atom within that solar system.
This means that, for the most part, quantum phenomena are confined to the scale of atoms and fundamental particles, where the masses and velocities are small enough for the wavelengths to get big enough to observe directly. There's an active effort in a bunch of areas, though, to push the size of systems showing quantum effects up to larger sizes. I've blogged a bunch about experiments by Markus Arndt's group showing wave-like behavior in larger and larger molecules, and there are a bunch of groups in "cavity opto-mechanics" trying to use light to slow the motion of chunks of silicon down to the point where the discrete quantum nature of the motion would become clear. There are even some suggestions that it might be possible to do this with suspended mirrors having masses of several grams, which would be amazingly cool.
Quantum Physics Is Not Magic
Comic from "Surviving the World" by Dante Shepherd. (http://survivingtheworld.net/Lesson1518.html )... [+] Used with permission.
The previous point leads very naturally into this one: as weird as it may seem, quantum physics is most emphatically not magic. The things it predicts are strange by the standards of everyday physics, but they are rigorously constrained by well-understood mathematical rules and principles.
So, if somebody comes up to you with a "quantum" idea that seems too good to be true-- free energy, mystical healing powers, impossible space drives-- it almost certainly is. That doesn't mean we can't use quantum physics to do amazing things-- you can find some really cool physics in mundane technology-- but those things stay well within the boundaries of the laws of thermodynamics and just basic common sense.
So there you have it: the core essentials of quantum physics. I've probably left a few things out, or made some statements that are insufficiently precise to please everyone, but this ought to at least serve as a useful starting point for further discussion.
Go here to see the original:
Six Things Everyone Should Know About Quantum Physics
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]