It is the central question in quantum mechanics, and no one knows the answer: What really happens in a superpositionthe peculiar circumstance in which particles seem to be in two or more places or states at once? In 2018 a team of researchers in Israel and Japan proposed an experiment that could finally let us say something for sure about the nature of this puzzling phenomenon.
Their experiment was designed to enable scientists to sneak a glance at where an objectin this case a particle of light, called a photonactually resides when it is placed in a superposition. And the researchers predict the answer will be even stranger and more shocking than two places at once.
The classic example of a superposition involves firing photons at two parallel slits in a barrier. One fundamental aspect of quantum mechanics is that tiny particles can behave like waves, so that those passing through one slit interfere with those going through the other, their wavy ripples either boosting or canceling one another to create a characteristic pattern on a detector screen. The odd thing, though, is this interference occurs even if only one particle is fired at a time. The particle seems somehow to pass through both slits at once, interfering with itself. Thats a superposition.
And it gets weirder: Measuring which slit such a particle goes through will invariably indicate it only goes through onebut then the wavelike interference (the quantumness, if you will) vanishes. The very act of measurement seems to collapse the superposition. We know something fishy is going on in a superposition, says physicist Avshalom Elitzur of the Israeli Institute for Advanced Research. But youre not allowed to measure it. This is what makes quantum mechanics so diabolical.
For decades researchers have stalled at this apparent impasse. They cannot say exactly what a superposition is without looking at it, but if they try to look at it, it disappears. One potential solutiondeveloped by Elitzurs former mentor, Israeli physicist Yakir Aharonov, now at Chapman University, and his collaboratorssuggests a way to deduce something about quantum particles before measuring them. Aharonovs approach is called the two-state-vector formalism (TSVF) of quantum mechanics and postulates quantum events are in some sense determined by quantum states not just in the pastbut also in the future. That is, the TSVF assumes quantum mechanics works the same way both forward and backward in time. From this perspective, causes can seem to propagate backward in time, occurring after their effects: a phenomenon called retrocausation.
But one neednt take this strange notion literally. Rather in the TSVF, one can gain retrospective knowledge of what happened in a quantum system by selecting the outcome: Instead of simply measuring where a particle ends up, a researcher chooses a particular location in which to look for it. This is called postselection, and it supplies more information than any unconditional peek at outcomes ever could. This is because the particles state at any instant is being evaluated retrospectively in light of its entire history, up to and including measurement. The oddness comes in because it looks as if the researchersimply by choosing to look for a particular outcomethen causes that outcome to happen. But this is a bit like concluding that if you turn on your television when your favorite program is scheduled, your action causes that program to be broadcast at that very moment. Its generally accepted that the TSVF is mathematically equivalent to standard quantum mechanics, says David Wallace, a philosopher of science at the University of Southern California, who specializes in interpretations of quantum mechanics. But it does lead to seeing certain things one wouldnt otherwise have seen.
Take, for instance, a version of the double-slit experiment devised by Aharonov and his co-worker Lev Vaidman of Tel Aviv University in 2003, which they interpreted with the TSVF. The pair described (but did not build) an optical system in which a single photon acts as a shutter that closes a slit by causing another probe photon approaching the slit to be reflected back the way it came. By applying postselection to the measurements of the probe photon, Aharonov and Vaidman showed, one could discern a shutter photon in a superposition closing both (or indeed arbitrarily many) slits simultaneously. In other words, this thought experiment would in theory allow one to say with confidence the shutter photon is both here and there at once. Although this situation seems paradoxical from our everyday experience, it is one well-studied aspect of the so-called nonlocal properties of quantum particles, where the whole notion of a well-defined location in space dissolves.
In 2016 physicists Ryo Okamoto and Shigeki Takeuchi of Kyoto University verified Aharonov and Vaidmans predictions experimentally using a light-carrying circuit in which the shutter photon is created using a quantum router, a device that lets one photon control the route taken by another. This was a pioneering experiment that allowed one to infer the simultaneous position of a particle in two places, says Elitzurs colleague Eliahu Cohen of the University of Ottawa in Ontario.
Now Elitzur and Cohen have teamed up with Okamoto and Takeuchi to concoct an even more mind-boggling experiment. They believe it will enable researchers to say with certainty something about the location of a particle in a superposition at a series of different points in timebefore any actual measurement has been made.
This time the probe photons route would be split into three by partial mirrors. Along each of those paths it may interact with a shutter photon in a superposition. These interactions can be considered to take place within boxes labeled A, B and C, one of which is situated along each of the photons three possible routes. By looking at the self-interference of the probe photon, one can retrospectively conclude with certainty the shutter particle was in a given box at a specific time.
The experiment is designed so the probe photon can only show interference if it interacted with the shutter photon in a particular sequence of places and times: namely, if the shutter photon was in both boxes A and C at some time (t1), then at a later time (t2) only in C, and at a still later time (t3) in both B and C. So interference in the probe photon would be a definitive sign the shutter photon made this bizarre, logic-defying sequence of disjointed appearances among the boxes at different timesan idea Elitzur, Cohen and Aharonov proposed as a possibility in 2017 for a single particle spread across three boxes. I like the way this paper frames questions about what is happening in terms of entire histories rather than instantaneous states, says physicist Ken Wharton of San Jos State University, who is not involved in the new project. Talking about states is an old pervasive bias, whereas full histories are generally far more rich and interesting.
That richness, Elitzur and his colleagues argue, is what the TSVF gives access to. The apparent vanishing of particles in one place at one timeand their reappearance in other times and placessuggests an extraordinary vision of the underlying processes involved in the nonlocal existence of quantum particles. Through the lens of the TSVF, Elitzur says, this flickering, ever changing existence can be understood as a series of events in which a particles presence in one place is canceled by its own counterparticle in the same location. He compares this with the idea introduced by British physicist Paul Dirac in the 1920s, who argued that particles possess antiparticles, and if brought together, a particle and antiparticle can annihilate each other. At first this notion seemed just a manner of speaking but soon led to the discovery of antimatter. The disappearance of quantum particles is not annihilation in this same sense, but it is somewhat analogous: these putative counterparticles, Elitzur posits, should possess negative energy and negative mass, allowing them to cancel their counterparts.
So although the traditional two places at once view of superposition might seem odd enough, its possible a superposition is a collection of states that are even crazier, Elitzur says. Quantum mechanics just tells you about their average. Postselection then allows one to isolate and inspect just some of those states at greater resolution, he suggests. Such an interpretation of quantum behavior would be, he says, revolutionarybecause it would entail a hitherto unguessed menagerie of real (but very odd) states underlying counterintuitive quantum phenomena.
Okamoto and his colleagues in Kyoto have now carried out the proposed experiment using photons, but they are still analyzing the results. All the same, Cohen says, the preliminary results accord well with the theory. He says the Japanese researchers are now making improvements to the setup to shrink the error bars.
For now some outside observers are not exactly waiting with bated breath. The experiment is bound to work, Wharton saysbut he adds it wont convince anyone of anything, since the results are predicted by standard quantum mechanics. In other words, there would be no compelling reason to interpret the outcome in terms of the TSVF rather than one of the many other ways that researchers interpret quantum behavior.
Elitzur agrees their experiment could have been conceived using the conventional view of quantum mechanics that prevailed decades agobut it never was. Isnt that a good indication of the soundness of the TSVF? he asks. And if someone thinks they can formulate a different picture of what is really going on in this experiment using standard quantum mechanics, he adds, Well, let them go ahead!
He is confident that the work heralds nothing short of a revolution within quantum mechanics. Now that measurement methods have become precise enough, he says, you can be sure that notions like retrocausation are going to become part and parcel of quantum reality.
Originally posted here:
Quantum Physics May Be Even Spookier Than You Think ...
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]