February 25, 2021• Physics 14, 27
A new analysis of heavy-ion collision experiments uncovers evidence that two colliding nuclei behave like a Josephson junctiona device in which Cooper pairs tunnel through a barrier between two superfluids.
The Josephson effect is a remarkable example of a macroscopic quantum phenomenon, in which, without an applied voltage, current flows between two superconductors separated by a thin film of normal material. In this structure, called a Josephson junction, the current is due to the quantum tunneling of paired, superconducting electrons (so-called Cooper pairs) [1]. For decades, nuclear physicists have hypothesized that similar effects can occur on much smaller scales, since atomic nuclei could be regarded as superfluids consisting of paired nucleons. Recent experiments have supported this hypothesis, delivering hints that two colliding nuclei could be described as a Josephson junction in which entangled neutron pairs play the role of Cooper pairs (Fig. 1) [2, 3]. Now, Gregory Potel from Lawrence Livermore National Laboratory in California and colleagues have put these ideas on firmer ground [4]. Analyzing tin-nickel collisions from previous experiments, they found that experimental observables offer compelling signatures that two nuclei indeed form, for a split second, a Josephson junction.
The orderly motion of gigantic ensembles of correlated electron pairs makes superconductors behave as a single objecta macroscopic quantum state called a condensate. The condensate is characterized by its density and phase, and the latter plays the same role as the orientation of magnetic moments in a ferromagnet: an isolated ferromagnet can be rotated at no energy cost, but two ferromagnets with different orientations affect each other. Similarly, according to quantum mechanics, the phase doesnt have implications for a single condensate. But if two condensates are sufficiently close, a Cooper-pair current, whose magnitude depends on the phase difference, may flow from one condensate to the other. A striking feature of this effect is that electric current may flow without a driving voltage.
There may be other systems in Nature where this effect occurs, and atomic nuclei, which can be regarded as superfluid ensembles of nucleons, are good candidates. This idea appeared among nuclear physicists as early as the 1970s [5]. In the 1980s and 1990s, several experiments indicated an enhanced probability of neutron-pair transfer between colliding nucleia possible manifestation of the Josephson effect. But the evidence for this interpretation wasnt compelling. There were doubts, in particular, about whether ensembles of nucleons are sufficiently large to be treated as a pair condensate. Superconductivity is an emergent phenomenon: It appears when dealing with a huge number of particles but vanishes when the system is broken down into smaller constituents. But can we consider a nucleus made of about 100 nucleons a huge ensemble of particles? Can we expect that two nuclei in close proximity exhibit a Josephson effect?
The study by Potel and his colleagues provides strong arguments for affirmative answers to these questions. The researchers analyzed data from previous experiments in which tin-116 ( 116Sn) nuclei were collided with nickel-60 ( 60Ni) [2]. With energies between 140.60 and 167.95 MeV, these collisions are gentle: they allow the nuclei to overcome just enough of the Coulomb repulsion to get sufficiently close to exchange a few neutrons at most. Under such conditions, two reactions are possible: the transfer of one neutron and the transfer of two neutrons, producing 115Sn+61Ni and 114Sn+62Ni, respectively. The case of two-neutron transfer is particularly interesting, as it may carry signatures of the correlated pairing of neutrons in the nuclei.
The team devised a way to uncover the experimental evidence of Josephson flow. Their idea is that there can be a nuclear equivalent of the alternating current (ac) Josephson effect (Fig. 1). In this variant of the Josephson effect, a constant, or dc, voltage applied to a Josephson junction produces an ac current. This striking behavior arises because the voltage causes the phase difference between the two condensates to increase over time. Since phases that differ by multiples of 2 are equivalent, a linear phase growth produces an oscillating current. The researchers argue that for the nuclear case, a similar effect can occur because neutron pairs inside two colliding nuclei possess different energies. This energy difference plays the role of the dc voltage in the ac Josephson effect.
Therefore, similar oscillatory behavior is expected to occur during a nuclear collision: the back-and-forth tunneling of neutron pairs means that 116Sn+60Ni transforms into 114Sn+62Ni and then again into 116Sn+60Nia cyclical process whose frequency is determined by the energy difference of neutron pairs in initial and final nuclei. Because the collision lasts for only a short time, the team estimates that only about three such back-and-forth transfer cycles may occur in an experiment. However, even these few oscillations can lead to observable consequences. Since neutrons and protons interact strongly, oscillating neutron pairs cause protons to oscillate at the same frequency. Because of their charge, oscillating protons should emit electromagnetic radiation at this frequency. While electrons oscillating in a standard Josephson junction emit microwave photons [6], nuclei are expected to emit gamma-ray photons because of the much larger nuclear energy differences involved. The researchers calculate the expected radiation energy to be slightly less than 4 MeV, which matches the gamma-ray spectrum seen in previous experiments.
The results are thrilling for two reasons. First, they indicate that the principles of superconductivity valid for macroscopic phenomena in solids may be applicable to the much smaller (femtometer) nuclear scalesa truly spectacular conclusion. Second, the analysis shows that the pairing description is appropriate for a small number of particlesthe hundreds of nucleons making up the nuclei. It is worth pointing out, however, that this description contains a puzzling inconsistency. According to quantum mechanics, the phase and the number of particles in the condensate are related by the uncertainty principlemuch like the position and momentum of a quantum particle: if either quantity is well defined, the other isnt. But for the nuclear case, the number of nucleons is always exactly defined. Further theoretical work will need to resolve this inconsistency.
These findings whet our appetite for more work aimed at validating superfluid nuclear models by confronting theory with experiments. In particular, it would be crucial to show that such models can deliver accurate, quantitative predictions for analogous effects in nuclear collisions beyond those involving tin and nickel.
Piotr Magierski is Professor of Physics and Head of the Nuclear Physics Division at Warsaw University of Technology, Poland, and an Affiliate Professor at the University of Washington. He is a theoretical physicist whose research interests include superfluidity and superconductivity in systems far from equilibrium, such as nuclear fission and fusion reactions, nuclear matter in neutron stars, and ultracold atomic gases.
Two mirror nuclei, in which the numbers of neutrons and protons are interchanged, have markedly different shapesa finding that defies current nuclear theories. Read More
Particle physicists have detected a short-lived nucleus containing two strange quarks, whose properties could provide new insights into the behavior of other nuclear particles. Read More
Here is the original post:
Physics - The Tiniest Superfluid Circuit in Nature - Physics
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]