Stephen Wolfram blames himself for not changing the face of physics sooner.
I do fault myself for not having done this 20 years ago, the physicist turned software entrepreneur says. To be fair, I also fault some people in the physics community for trying to prevent it happening 20 years ago. They were successful. Back in 2002, after years of labor, Wolfram self-published A New Kind of Science, a 1,200-page magnum opus detailing the general idea that nature runs on ultrasimple computational rules. The book was an instant best seller and received glowing reviews: the New York Times called it a first-class intellectual thrill. But Wolframs arguments found few converts among scientists. Their work carried on, and he went back to running his software company Wolfram Research. And that is where things remaineduntil last month, when, accompanied by breathless press coverage (and a 448-page preprint paper), Wolfram announced a possible path to the fundamental theory of physics based on his unconventional ideas. Once again, physicists are unconvincedin no small part, they say, because existing theories do a better job than his model.
At its heart, Wolframs new approach is a computational picture of the cosmosone where the fundamental rules that the universe obeys resemble lines of computer code. This code acts on a graph, a network of points with connections between them, that grows and changes as the digital logic of the code clicks forward, one step at a time. According to Wolfram, this graph is the fundamental stuff of the universe. From the humble beginning of a small graph and a short set of rules, fabulously complex structures can rapidly appear. Even when the underlying rules for a system are extremely simple, the behavior of the system as a whole can be essentially arbitrarily rich and complex, he wrote in a blog post summarizing the idea. And this got me thinking: Could the universe work this way? Wolfram and his collaborator Jonathan Gorard, a physics Ph.D. candidate at the University of Cambridge and a consultant at Wolfram Research, found that this kind of model could reproduce some of the aspects of quantum theory and Einsteins general theory of relativity, the two fundamental pillars of modern physics.
But Wolframs models ability to incorporate currently accepted physics is not necessarily that impressive. Its this sort of infinitely flexible philosophy where, regardless of what anyone said was true about physics, they could then assert, Oh, yeah, you could graft something like that onto our model, says Scott Aaronson, a quantum computer scientist at the University of Texas at Austin.
When asked about such criticisms, Gorard agreesto a point. Were just kind of fitting things, he says. But we're only doing that so we can actually go and do a systematized search for specific rules that fit those of our universe.
Wolfram and Gorard have not yet found any computational rules meeting those requirements, however. And without those rules, they cannot make any definite, concrete new predictions that could be experimentally tested. Indeed, according to critics, Wolframs model has yet to even reproduce the most basic quantitative predictions of conventional physics. The experimental predictions of [quantum physics and general relativity] have been confirmed to many decimal placesin some cases, to a precision of one part in [10 billion], says Daniel Harlow, a physicist at the Massachusetts Institute of Technology. So far I see no indication that this could be done using the simple kinds of [computational rules] advocated by Wolfram. The successes he claims are, at best, qualitative. Further, even that qualitative success is limited: There are crucial features of modern physics missing from the model. And the parts of physics that it can qualitatively reproduce are mostly there because Wolfram and his colleagues put them in to begin with. This arrangement is akin to announcing, If we suppose that a rabbit was coming out of the hat, then remarkably, this rabbit would be coming out of the hat, Aaronson says. And then [going] on and on about how remarkable it is.
Unsurprisingly, Wolfram disagrees. He claims that his model has replicated most of fundamental physics already. From an extremely simple model, were able to reproduce special relativity, general relativity and the core results of quantum mechanics, he says, which, of course, are what have led to so many precise quantitative predictions of physics over the past century.
Even Wolframs critics acknowledge he is right about at least one thing: it is genuinely interesting that simple computational rules can lead to such complex phenomena. But, they hasten to add, that is hardly an original discovery. The idea goes back long before Wolfram, Harlow says. He cites the work of computing pioneers Alan Turing in the 1930s and John von Neumann in the 1950s, as well as that of mathematician John Conway in the early 1970s. (Conway, a professor at Princeton University, died of COVID-19 last month.) To the contrary, Wolfram insists that he was the first to discover that virtually boundless complexity could arise from simple rules in the 1980s. John von Neumann, he absolutely didnt see this, Wolfram says. John Conway, same thing.
Born in London in 1959, Wolfram was a child prodigy who studied at Eton College and the University of Oxford before earning a Ph.D. in theoretical physics at the California Institute of Technology in 1979at the age of 20. After his Ph.D., Caltech promptly hired Wolfram to work alongside his mentors, including physicist Richard Feynman. I dont know of any others in this field that have the wide range of understanding of Dr. Wolfram, Feynman wrote in a letter recommending him for the first ever round of MacArthur genius grants in 1981. He seems to have worked on everything and has some original or careful judgement on any topic. Wolfram won the grantat age 21, making him among the youngest ever to receive the awardand became a faculty member at Caltech and then a long-term member at the Institute for Advanced Study in Princeton, N.J. While at the latter, he became interested in simple computational systems and then moved to the University of Illinois in 1986 to start a research center to study the emergence of complex phenomena. In 1987 he founded Wolfram Research, and shortly after he left academia altogether. The software companys flagship product, Mathematica, is a powerful and impressive piece of mathematics software that has sold millions of copies and is today nearly ubiquitous in physics and mathematics departments worldwide.
Then, in the 1990s, Wolfram decided to go back to scientific researchbut without the support and input provided by a traditional research environment. By his own account, he sequestered himself for about a decade, putting together what would eventually become A New Kind of Science with the assistance of a small army of his employees.
Upon the release of the book, the media was ensorcelled by the romantic image of the heroic outsider returning from the wilderness to single-handedly change all of science. Wired dubbed Wolfram the man who cracked the code to everything on its cover. Wolfram has earned some bragging rights, the New York Times proclaimed. No one has contributed more seminally to this new way of thinking about the world. Yet then, as now, researchers largely ignored and derided his work. Theres a tradition of scientists approaching senility to come up with grand, improbable theories, the late physicist Freeman Dyson told Newsweek back in 2002. Wolfram is unusual in that hes doing this in his 40s.
Wolframs story is exactly the sort that many people want to hear, because it matches the familiar beats of dramatic tales from science history that they already know: the lone genius (usually white and male), laboring in obscurity and rejected by the establishment, emerges from isolation, triumphantly grasping a piece of the Truth. But that is rarelyif everhow scientific discovery actually unfolds. There are examples from the history of science that superficially fit this image: Think of Albert Einstein toiling away on relativity as an obscure Swiss patent clerk at the turn of the 20th century. Or, for a more recent example, consider mathematician Andrew Wiles working in his attic for years to prove Fermats last theorem before finally announcing his success in 1995. But portraying those discoveries as the work of a solo genius, romantic as it is, belies the real working process of science. Science is a group effort. Einstein was in close contact with researchers of his day, and Wiless work followed a path laid out by other mathematicians just a few years before he got started. Both of them were active, regular participants in the wider scientific community. And even so, they remain exceptions to the rule. Most major scientific breakthroughs are far more collaborativequantum physics, for example, was developed slowly over a quarter-century by dozens of physicists around the world.
I think the popular notion that physicists are all in search of the eureka moment in which they will discover the theory of everything is an unfortunate one, says Katie Mack, a cosmologist at North Carolina State University. We do want to find better, more complete theories. But the way we go about that is to test and refine our models, look for inconsistencies and incrementally work our way toward better, more complete models.
Most scientists would readily tell you that their discipline isand always has beena collaborative, communal process. Nobody can revolutionize a scientific field without first getting the critical appraisal and eventual validation of their peers. Today this requirement is performed through peer reviewa process Wolframs critics say he has circumvented with his announcement. Certainly theres no reason that Wolfram and his colleagues should be able to bypass formal peer review, Mack says. And they definitely have a much better chance of getting useful feedback from the physics community if they publish their results in a format we actually have the tools to deal with.
Mack is not alone in her concerns. Its hard to expect physicists to comb through hundreds of pages of a new theory out of the blue, with no buildup in the form of papers, seminars and conference presentations, says Sean Carroll, a physicist at Caltech. Personally, I feel it would be more effective to write short papers addressing specific problems with this kind of approach rather than proclaiming a breakthrough without much vetting.
So why did Wolfram announce his ideas this way? Why not go the traditional route? I don't really believe in anonymous peer review, he says. I think its corrupt. Its all a giant story of somewhat corrupt gaming, I would say. I think its sort of inevitable that happens with these very large systems. Its a pity.
So what are Wolframs goals? He says he wants the attention and feedback of the physics community. But his unconventional approachsoliciting public comments on an exceedingly long paperalmost ensures it shall remain obscure. Wolfram says he wants physicists respect. The ones consulted for this story said gaining it would require him to recognize and engage with the prior work of others in the scientific community.
And when provided with some of the responses from other physicists regarding his work, Wolfram is singularly unenthused. Im disappointed by the naivete of the questions that youre communicating, he grumbles. I deserve better.
Continued here:
Physicists Criticize Stephen Wolfram's 'Theory of Everything' - Scientific American
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]