A critical state of the quasiperiodic patterning of a semiconductors polariton cavity. Credit: Aalto University, Jose Lado
Combined theoretical and experimental work unveils a novel mechanism through which criticality emerges in quasiperiodic structures a finding that provides unique insight into the physics on the middle ground between order and disorder.
Quasiperiodic structures, which are ordered but are not strictly periodic, are the source of extraordinary beauty in nature, art, and science. For physicists, quasiperiodic order is both aesthetically and intellectually appealing. Numerous physical processes that are well described in periodic structures fundamentally change their character when they happen in quasiperiodic systems. Add quantum mechanics, and striking new phenomena can emerge that remain not fully understood. Writing in Nature Physics, an international team led by Oded Zilberberg of the Institute of Theoretical Physics at ETH Zurich and by CNRS physics researchers Jacqueline Bloch of the Universit Paris-Saclay and Alberto Amo of Lille University, now describes combined theoretical and experimental work in which they establish versatile tools for exploring the behaviour of quantum systems in a diverse range of one-dimensional quasiperiodic settings and demonstrate the strength of their approach to uncover new physical mechanisms.
The essence, and beauty, of quasiperiodic structures can be grasped by considering floor plates. A floor can be readily tiled without gaps using identical pieces of, for example, triangular, square or hexagonal shape, repeating a simple pattern. But a plane surface can also be fully covered in non-repeating patterns, and that by using just two types of rhomboid tiles, as the English physicist and mathematician Roger Penrose has famously shown (see the figure). In that case, even if local configurations appear in different places, the overall pattern cannot be superimposed with itself by translation and rotation. As such, these systems occupy some sort of middle ground between periodic and randomly disordered structures.
Combined theoretical and experimental work unveils a novel mechanism through which criticality emerges in quasiperiodic structures a finding that provides unique insight into the physics on the middle ground between order and disorder. Credit: ETH Zurich/D-?PHYS Oded Zilberberg
On that middle ground, there is intriguing physics to be explored. Take a perfectly ordered crystal. There, the periodicity permits wavelike propagation of electrons through the material, for instance in a metal. If the crystalline perfection is perturbed by introducing disorder, the behavior changes. For low levels of disorder, the material still conducts, but less well. At some level of disorder though, the electrons stop propagating and become collectively localized, in a process known as Anderson localization. For periodic lattices, this effect has first been described in 1958 (by 1977 Physics Nobel laureate Philip Anderson, who passed away on 29 March this year). But how such processes play out in quasiperiodic structures continues to be an area of active research.
A wide range of unconventional physical phenomena have been described for quasiperiodic systems, but there exists no overarching framework for dealing with wave propagation in quasiperiodic structures. There are, however, various models that make it possible to study specific aspects of transport and localization. Two paradigmatic examples of such models are the AubryAndr and the Fibonacci models, each of which describes different physical phenomena, not least when it comes to localization properties.
In the AubryAndr model, there are two distinct parameter regions in which the particles can be in either extended or localized states (in the same sense as electrons can either propagate through a material or be stuck in an insulating state). By contrast, in the Fibonacci model there is not one specific critical point separating the two regimes, but for any parameter the system is in such a critical state between localized and extended. Despite their sharply contrasting behaviors, the two models are connected to one another, and one can be continuously transformed into one another. This is something Zilberberg, then working at the Weizmann Institute of Science in Israel, had shown in breakthrough work with his colleague Yaacov Kraus in 2012. The question that remained was how the two so different localization behaviors are connected.
To answer that question, Zilberberg with his PhD student Antonio trkalj and his former postdoc Jose Lado (now at Aalto University) teamed up with CNRS experimentalists Jacqueline Bloch and Alberto Amo and their PhD student Valentin Goblot (now at the company STMicroelectronics). The French physicists had perfected a photonic platform so-called cavity-polariton lattices in which light can be guided through semiconductor nanostructures while experiencing interactions similar to those acting on electrons moving through a crystal. Importantly, they found ways to generate quasiperiodic modulations in their photonic wires that enabled them to implement experimentally, for the first time in any system, the KrausZilberberg model. Optical spectroscopy experiments performed locally on these photonic quasi-crystals offer the exquisite possibility of directly imaging light localization in the systems.
By combining their theoretical and experimental tools, the researchers were able to trace how the AubryAndr model evolves to become fully critical in the limit of the Fibonacci model. Counter nave expectation, the team showed that this does not happen in a smooth way, but through a cascade of localizationdelocalization transitions. Starting, for example, from the region of the AubryAndr model where particles are localized, at each step of the cascade process energy bands merge in a phase transition, during which particles are passing through the material. At the other side of the cascaded transition, the localization roughly doubles, sending the states of AubryAndr model gradually towards full criticality as it morphs into the Fibonacci model.
The situation bears some resemblance to what happens to a pile of rice as grains are added one by one. For some time, newly added grains will just sit where they landed. But once the slope at the landing site exceeds a critical steepness, a local avalanche is induced, leading to a rearrangement of parts of the pile surface. Repeating the process eventually leads to a stationary pile where one additional grain can trigger an avalanche on any of the relevant size scales a critical state. In the quasiperiodic systems, the situation is more complex because of the quantum nature of the particles involved, which means that these do not move like particles, but interfere like waves do. But in this setting as well, the evolution towards an overall critical state happens, as in the rice pile, through a cascade of discrete transitions.
With the theoretical description and experimental observation of this cascade to criticality, the teams have successfully connected quantum phenomena on two paradigmatic models of quasiperiodic chains, adding unique insight into the emergence of criticality. Moreover, they developed a flexible experimental platform for further explorations. The significance of these experiments goes firmly beyond light properties. The behavior of electrons, atoms and other quantum entities is governed by the same physics, which could inspire new ways of quantum control in devices. Just as the appeal of quasiperiodic patterns transcends disciplines, the potential to inspire scientific and eventually technological advances seems similarly boundless.
Reference: Emergence of criticality through a cascade of delocalization transitions in quasiperiodic chains by V. Goblot, A. trkalj, N. Pernet, J. L. Lado, C. Dorow, A. Lematre, L. Le Gratiet, A. Harouri, I. Sagnes, S. Ravets, A. Amo, J. Bloch and O. Zilberberg, 1 June 2020, Nature Physics.DOI: 10.1038/s41567-020-0908-7
More:
Intricate Beauty, Quasiperiodic Structures, and the Cascade to Criticality - SciTechDaily
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]