Special relativity could open the door to ultra-secure ATM machines.
It's Monday morning and you're headed to grab an espresso from a corner cafe. Upon entering, you run into the dreaded "cash only" sign. "No problem," you think, wandering to the nearest ATM. You arrive at the machine, slip out your debit card, insert its worn chip and cup your hands into mini-shields while punching in your secret PIN.
During the process, however, sly thieves might have seen past your humble security measures. They may have even preemptively hacked the cash machine to collect your code. To withdraw money for coffee, you've actually risked theft.
Unlock the biggest mysteries of our planet and beyond with the CNET Science newsletter. Delivered Mondays.
Could there be a safer way to do this? A team of researchers hailing from Canada and Switzerland are determined to find out. They published a blueprint in the journal Natureearlier this month that detailed an ultra-secure cash machine that would completely reinvent the system.
"The assumption of trusting the device when you are doing anything related to identification is kind of a problem, at least at the fundamental level," said Sbastien Designolle, a physicist at the University of Geneva and co-author of the study.
"Drop all assumptions" is the motto he and fellow researchers abided by while coming up with a more secure mechanism to retrieve cash.
Anchoring their far-fetched idea with physicist Albert Einstein's theory of special relativity, they propose replacing the PIN system with what's called a zero-knowledge proof.
Here's how it works.
Remember brain teasers? Zero-knowledge proofs are like a grownup version of such mind games. In cryptography, which is the study of secure communication, they're a method by which party A proves to party B that they know something. The catch is, party A, the prover, can't reveal the information they know to party B, the verifier.
But there's a way for party A to get around the caveat.
Suppose you have a friend named Jones who can only see in black and white, but you can see in color. Your objective is to prove to Jones you can, in fact, see color. If you were to use a zero-knowledge proof, it might go something like this:
Jones holds a red card and a blue card before you. Then, behind his back, he either swaps them or doesn't swap them. Laying them out in front of you again, he asks, "Did I swap them?"
The game could be repeated a hundred times, and you'll always have the correct answer because you can see the colors. After many iterations, Jones would eventually say, "Alright, I believe you. You can see color." At that point, you've shown him your color-identifying ability without revealing the colors you see.
"In our study," explained Designolle, "the proof is the three-colorability of a graph."
Albert Einstein's theory of special relativity could get a new practical application.
There's some lore behind the idea. Three-colorability is a notoriously difficult mathematical problemthat theorists have studied for years. It posits the question: How can you color an enormous map of shapes with three shades such that the same colors never touch?
This wouldn't be like world maps we're used to. It'd be so huge that humans need technology to comprehend it, but even with such help, Designolle said it would take years to find a three-colorability solution.
Taking the concept to ATMs, he suggests giving everyone a device holding a uniquely colorized map with a preprogrammed three-colorability solution. To withdraw cash, you'd plug the device into an external outlet on the ATM, the verifier in this case.
The machine would query your device, or prover, with hundreds of thousands of questions regarding sections of your map's colors. Despite the complexity of three-colorability, your device would immediately answer because it's been preprogrammed.
Further, because every round of queries is randomized, even if the verifier asks about different edges, the ATM would never receive enough information to know the full map, Designolle explained, "which is the crucial point."
Eventually, like in the situation with Jones, the ATM will verify your identity and roll out your cash because of your device's consistently correct answers -- like the way Jones said, "Alright, I believe you. You can see color." Ta-da.
The invention seems solid -- to me, at least. But Designolle and his team aimed to drop all assumptions. They still didn't completely trust the security of the three-color map system.
Hypothetically, they argue, someone could record your device's sparse answers about its map and attempt to reverse calculate the full picture, enabling them to fake your identity.
"Those functions that you can perform in one direction are very difficult, but not impossible, to compute in the other direction," Designolle said.
For example, if you multiply two prime numbers and get a very big number, it's difficult to go back to the elementary numbers. But that doesn't bar it from being done. The same applies to three-colorability.
So, how can we take these machines to a level of unconditional security? Designolle thought, well, what about invoking two devices?
"The idea behind this is precisely the same as a policeman investigating and asking two separate suspects [questions] in different rooms, so that they can't communicate," Designolle said. "If they are telling the same version of the story, then it's a good hint they actually are telling the truth."
Two ATMs, two devices -- ultimate safety?
Back to the cash machine.
With two devices, you'd divide yourself into two provers, like the two suspects. Then, two verifiers, ATMs, will simultaneously ask its respective prover the usual three-colorability questions.
Yes, you would have to plug two separate devices into two separate ATMs. At present, the researchers say the system works with the ATMs standing 60 meters (about 196 feet) apart. But they say they can get it down to a meter, or about 3 feet. It sounds overly complicated, but remember, the purpose of the experiment is to illustrate what an unconditionally secure cash machine mechanism might look like. It's theoretical -- for now, at least.
If each prover appears to hold the same, incalculable knowledge, it'd be safe to say that your identity is verified.
And like the criminal suspects, the devices wouldn't be able to communicate with each other. Any potential hacker would need to reverse calculate not one, but two, complex maps at the exact same time, an exceptionally challenging -- if not impossible -- task.
Here's the moment you've been waiting for -- where Einstein comes in. The reason these devices wouldn't be able to communicate is they'd be bound by Einstein's theory of special relativity.
Einstein's theory of special relativity beautifully marries the realms of space and time. But more importantly for Designolle's team, it also leads to constraints on how fast information travels.
"With special relativity," Designolle said, "it seems quite reasonable to believe in this not computational but physical assumption ... that information cannot go faster than the speed of light."
As long as the two ATMs ask their respective plugged-in, map-filled devices questions quickly enough for lags to always remain shorter than the time needed to transfer information -- restricted by the speed of light -- we'd guard against the possibility of the devices talking to each other.
In a sense, the provers couldn't check their "alibis" to fake an identity.
There's just one, final issue. These relativistic constraints aren't so airtight when it comes to nonconventional physics. Enter quantum computing.
Light works differently in the quantum world. Quantum mechanics allows for a fascinating principle called quantum entanglement. Put simply, when two quantum particles -- namely, light particles -- are entangled, they can instantaneously communicate.
It's not even a matter of how fast the information travels. It's immediate. If particle A holds knowledge of something, you can be absolutely sure particle B already knows it too.
IBM's quantum computer
"Suppose that I do not have the coloring of a graph, but I want to pretend that I do," Designolle said, referring to a potential hacker. "I could come up with a procedure using quantum entanglement between the two chips to answer the questions correctly. In a way, I can cheat."
While Designolle's team believes their mechanism should be able to guarantee safety from quantum hackers, they're not sure. However, they're currently pondering whether the protocol could itself use quantum provers instead of standard devices.
And if you've gotten this far, you might be wondering exactly how theoretical these ultra-secure ATMs are. Is it even possible to bring them into reality?
Right now, Designolle said, the main issue is cost. In order to create the devices needed for the mechanism, the chips can't be the same type we find on our debit cards today. They will have to be extremely powerful, which means they'll likely be very expensive. One idea he has is to invoke the system for large companies that trade secure information and can afford the pricey chips.
That would actually make the relativistic constraints looser because there would be a greater distance between each party's device and the verifying "cash machine," so light would take longer to travel. This means there'd be more room for lags before hackers can penetrate the system.
But aside from the realistic applications, Designolle said, "On a personal note, it was really interesting just to see that sometimes something very simple is actually hard to come up with. ... At some point, yes, this occurred, but it was not very clear from the beginning that it would be so simple in the end."
Read the rest here:
Einstein's theory of special relativity could help create unhackable ATMs - CNET
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]