A detailed look at the Universe reveals that it's made of matter and not antimatter, that dark ... [+] matter and dark energy are required, and that we don't know the origin of any of these mysteries. However, the fluctuations in the CMB, the formation and correlations between large-scale structure, and modern observations of gravitational lensing all point towards the same picture.
Whenever you hear the phrase, its just a theory, it should trigger alarm bells in the scientific portion of your brain. While most of us, colloquially, use the term theory synonymously with a word like idea, hypothesis, or guess, you have a much higher bar to clear when it comes to science. At the very least, your theory needs to be formulated within a self-consistent framework that doesnt violate its own rules. Next, your theory needs to not (obviously) conflict with whats already been observed and established: it must be a non-falsified theory.
And then, even at that, your theory can only be considered speculative until the critical and decisive tests arrive, allowing you to discern whether your theory matches the data in a way that alternatives including the prior consensus theory do not. Only if your theory passes a series of tests will it be accepted by the mainstream. Quite famously, string theory does not meet the necessary criteria for this, and can be considered, at best, a speculative theory. But many astrophysical theories, including inflation, dark matter, and dark energy, are far more sound than almost everyone realizes. Heres the science behind why were so certain that all of them exist.
Quantum gravity tries to combine Einsteins general theory of relativity with quantum mechanics. ... [+] Quantum corrections to classical gravity are visualized as loop diagrams, as the one shown here in white. In reality, we know that general relativity works where Newton's gravity does not and where special relativity does not, but even general relativity should have a limit to its range of validity.
The history of science is filled with ideas, some of which have been shown to accurately describe reality over some particular range which we can probe it, and others of which turned out not to describe reality, although they could have if nature had answered our questions differently. We have a Universe that obeys Newtons laws of motion and his theory of universal gravitation, so long as speeds are low compared to the speed of light. At higher speeds, Newtons laws of motion no longer apply, and must be superseded by Special Relativity. In strong gravitational fields, even Special Relativity and universal gravitation arent enough, and General Relativity is required.
Although General Relativity holds up as our theory of gravity everywhere weve probed it, we fully expect that when we dive deep into the quantum Universe to small enough distance scales or at high-enough energy scales even General Relativity is known to give nonsense answers: answers that indicate an end to its range of validity. Despite all of its predictive power, and its status as arguably the most successful physical theory of all time, its powerless to describe the region around a black holes singularity, physics near the Planck scale, or the emergence of space and time themselves. For those phenomena, a quantum description of gravity will be necessary.
The particle tracks emanating from a high energy collision at the LHC in 2014. These types of ... [+] collisions test conservation of momentum and energy far more robustly than any other experiment. While there may be new physics out there, and in fact there almost certainly is, the LHC only reaches collision energies of ~10^4 GeV, or 1-part-in-10^15 of the Planck scale.
Of course, weve never gotten anywhere near that far in practice. Directly, we can produce collisions in particle colliders up to a little more than 104 GeV: enough to unify the electromagnetic and weak forces and to create all the particles (and antiparticles) of the Standard Model, but still a factor of a quadrillion (1015) beneath the Planck scale. Whatever the physics of:
we dont have any direct evidence supporting it.
But that hasnt stopped us from, well, theorizing. We can concoct scenarios where new physics physics that, if we added it in, wouldnt conflict with the low-energy, late-time Universe thats already been observed comes into play. Many of these scenarios are quite famous within the physics community, and include such novelties as extra dimensions, supersymmetry, grand unification theories, compositeness to certain particles presently thought to be fundamental, and string theory.
The Standard Model particles and their supersymmetric counterparts. Slightly under 50% of these ... [+] particles have been discovered, and just over 50% have never showed a trace that they exist. Supersymmetry is an idea that hopes to improve on the Standard Model, but it has yet to make successful predictions about the Universe in attempting to supplant the prevailing theory. If there is no supersymmetry at all energies, string theory must be wrong.
However, there exists no direct experimental evidence to support any of these scenarios. You cant exactly rule them out by not finding evidence for them; you can only place constraints on them, saying that if they exist, they exist below a certain experimental threshold. In other words, their couplings to the observed particles must be below a certain value; their cross sections must be below a certain value with normal matter; the masses of new particles must be above a certain threshold; their effects on the decays of the known particles must be below the measured limits.
Many scientists who work in these fields on the frontiers of high-energy and particle physics have begun to openly express frustrations about the lack of promising new directions to explore. At the Large Hadron Collider, theres no indication of any particles beyond the Standard Model, or even of any non-standard decay channels for the Higgs boson. Proton decay experiments have extended the lifetime of the proton to ~1034 years, ruling out many grand unified theories. Experiments probing for extra dimensions have come up empty.
On every front, the search for new fundamental particle physics that takes us beyond the Standard Model has thus far come up empty. Even the Muon g-2 experiment, vaunted for its precision in measuring a particular fundamental constant of the Universe, is arguably more likely to point to a problem in how we calculate quantities using different methods than it is to point to new physics.
While there is a mismatch between the theoretical and experimental results in the muon's magnetic ... [+] moment (right graph), we can be certain (left graph) it isn't due to the Hadronic light-by-light (HLbL) contributions. However, lattice QCD calculations (blue, right graph) suggest that hadronic vacuum polarization (HVP) contributions might account for the entirety of the mismatch.
Although a few alternative ideas have emerged in theoretical high-energy physics and in quantum gravity circles in recent years, its proven very difficult to introduce new physical ideas or concepts that arent already ruled out by the vast suite of data we already possess. The combined measurements of subtle effects like quark mixing, neutrino oscillations, decay rates, and branching ratios severely limit what sorts of new physics can be introduced. And yet, as long as youre willing to push whatever new physics you want to invoke to higher energies and smaller cross-sections or couplings, you can keep ideas like supersymmetry, extra dimensions, grand unification, and string theory alive.
It poses a conundrum for theoretical physicists who work on these problems, though: what should they work on? Its one thing to engage in fanciful ideation and to calculate the consequences of whatever scenario youve envisioned; its quite another to continue to plow ahead, undaunted, into further exploring a scenario with no evidence behind it. You can, of course, but you must worry that youre deluding yourself in doing so, just like perhaps the previous ~40 years of high-energy theorists have done. You can always attempt to explore alternative scenarios as well, although that has arguably not been fruitful, either.
But theres a third option. You can take your ideas and try to bring them into a place where there is lots of compelling evidence for physics beyond whats well-established: the field of cosmology.
During the earliest stages of the Universe, an inflationary period set up and gave rise to the hot ... [+] Big Bang. Today, billions of years later, dark energy is causing the expansion of the Universe to accelerate. These two phenomena have many things in common, and may even be connected, possibly related through black hole dynamics.
A lot of high-energy theorists and string theorists have begun working on cosmological problems in recent years, and in some ways thats a good thing. Particle physics plays a tremendously important role in astrophysical systems across the Universe, and in particular in high-energy environments, including:
Processes such as matter-antimatter annihilation, pair creation, neutrino emission and capture, nuclear reactions, and the decay of unstable particles all occur in copious amounts in these extreme environments. The fusion of cosmology with high-energy physics has led to the emergence of a new field at their intersection: astroparticle physics.
Whats most exciting, however, is that some of the astrophysical observations weve made indicate theres more to the Universe than the Standard Model alone can account for. In many ways, its our measurements of the cosmos itself the Universe on the largest scales that offers us the most compelling clues to what might be out there in the Universe beyond the limits of currently known and well-understood physics.
Four colliding galaxy clusters, showing the separation between X-rays (pink) and gravitation (blue), ... [+] indicative of dark matter. On large scales, cold dark matter is necessary, and no alternative or substitute will do. However, mapping out the X-ray light (pink) is not necessarily a very good indication of the dark matter distribution (blue).
In particular, there are four arenas where simply starting off from an extremely hot, dense, uniform, matter-and-radiation-filled, expanding Universe, and evolving the clock forward in time, simply wont reproduce the cosmos that we see today. If we did that with the laws we know of General Relativity plus the Standard Model of particle physics we would get something that looked very different from our Universe.
These four sets of observations are vital to our Universes history, pointing towards baryogenesis and the creation of a matter-antimatter asymmetry, dark matter, dark energy, and cosmic inflation, respectively.
The observation of even more distant supernovae allowed us to discern the difference between 'grey ... [+] dust' and dark energy, ruling the former out. But the modification of 'replenishing grey dust' is still indistinguishable from dark energy, although that is an ad hoc, unphysical explanation. Dark energy's existence is robust and quite certain.
There isnt just one line of evidence for any of these phenomena, but its very clear that if you want to reproduce the Universe we have, as we observe it to be, these ingredients and components are required. The combination of multiple sets of observations, including:
all indicate that these four things exist or occurred: baryogenesis and inflation occurred, and dark matter and dark energy exist. The only alternatives we have are to finely-tune the initial conditions that the Universe was born with and to add in some sort of new particles or fields that mimic dark matter and dark energy in every way measured so far, but differ in some subtle way that has yet to be identified.
An equally-symmetric collection of matter and antimatter (of X and Y, and anti-X and anti-Y) bosons ... [+] could, with the right GUT properties, give rise to the matter/antimatter asymmetry we find in our Universe today. However, we assume that there is a physical, rather than a divine, explanation for the matter-antimatter asymmetry we observe today, but we do not yet know for certain.
It is true that many of the details of these scenarios particularly when you combine all four pieces of the cosmic puzzle together lead to consequences that may or may not be observable.
Using speculative theoretical ideas from high-energy physics to motivate the exploration of various scenarios may be popular, but it is neither the only approach nor is there any reason to believe its a compelling approach. When you add speculation to solid science, you get speculation. It doesnt detract from the soundness of the sound science, however. Baryogenesis, inflation, dark matter, and dark energy are as real as ever, and dont depend in the least on any of the speculative ideas from high-energy physics, like supersymmetry or string theory, being true or correct in any way.
The quantum fluctuations that occur during inflation get stretched across the Universe, and when ... [+] inflation ends, they become density fluctuations. This leads, over time, to the large-scale structure in the Universe today, as well as the fluctuations in temperature observed in the CMB. New predictions like these are essential for demonstrating the validity of a proposed fine-tuning mechanism.
There are an unreasonable set of moving goalposts that some scientists particularly contrarians to the mainstream set up to add a false legitimacy to their claims, as well as a disingenuous uncertainty to the (well-justified) consensus positions. We do not need to identify the exact mechanism of baryogenesis to know that a matter-antimatter imbalance came about in our Universe. We do not need to directly detect whatever particle is responsible for dark matter, assuming dark matter even is a particle with a non-zero scattering cross-section, to know it exists. We do not need to detect gravitational waves from inflation to confirm inflation; the four discriminatory tests weve already performed are decisive.
And yet, there are still unknowns that we must be honest about. We do not know the cause of baryogenesis, or the nature of dark matter. We do not know whether inflation really must go on for an eternity, whether it really began from some non-inflationary predecessor state, and we cannot test whether the multiverse is real or not. We do not know, to put it bluntly, how far the range of validity for these theories extends.
But the fact that there are limits to what we know and to what we can know does not make our actual knowledge of the cosmos any less certain. Sympathy for contrarian positions and excitement about speculative ideas should only extend so far: to the extent that theyre supported by the full suite of available evidence. Especially when youre attempting to push the frontiers of science forward, its important to not lose sight of what is actually, solidly known and established along the way. After all, as Richard Feynman put it, when it comes to science, if you don't make mistakes, you're doing it wrong. If you don't correct those mistakes, you're doing it really wrong. If you can't accept that you're mistaken, you're not doing it at all.
View original post here:
Dont Let String Theory Ruin The Perfectly Good Science Of Physical Cosmology - Forbes
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]