There are some questions that, if you look up the answer, might make you question the reliability of your brain.
Many other examples abound, from the color of different flavor packets of Walkers crisps to the spelling of Looney Tunes (vs. Looney Toons) and Febreze (vs. Febreeze) to whether the Monopoly Man has a monocle or not.
Perhaps the simplest explanation for all of these is simply that human memory is unreliable, and that as much as we trust our brains to remember what happened in our own lives, our own minds are at fault. But theres another possibility based on quantum physics thats worth considering: could these truly have been the outcomes that occurred for us, but in a parallel Universe? Heres what the science has to say.
Visualization of a quantum field theory calculation showing virtual particles in the quantum vacuum. (Specifically, for the strong interactions.) Even in empty space, this vacuum energy is non-zero, and what appears to be the ground state in one region of curved space will look different from the perspective of an observer where the spatial curvature differs. As long as quantum fields are present, this vacuum energy (or a cosmological constant) must be present, too.
One of the biggest differences between the classical world and the quantum world is the notion of determinism. In the classical world which also defined all of physics, including mechanics, gravitation, and electromagnetism prior to the late 19th century the equations that govern the laws of nature are all completely deterministic. If you can give details about all of the particles in the Universe at any given moment in time, including their mass, charge, position, and momentum at that particular moment, then the equations that govern physics can tell you both where they were and where they will be at any moment in the past or future.
But in the quantum Universe, this simply isnt the case. No matter how accurately you measure certain properties of the Universe, theres a fundamental uncertainty that prevents you from knowing those properties arbitrarily well at the same time. In fact, the better you measure some of the properties that a particle or system of particles can have, the greater the inherent uncertainty becomes an uncertainty that you can not get rid of or reduce below a critical value in other properties. This fundamental relation, known as the Heisenberg uncertainty principle, cannot be worked around.
This diagram illustrates the inherent uncertainty relation between position and momentum. When one is known more accurately, the other is inherently less able to be known accurately. Every time you accurately measure one, you ensure a greater uncertainty in the corresponding complementary quantity.
Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!
There are many other examples of uncertainty in quantum physics, and many of those uncertain measurements dont just have two possible outcomes, but a continuous spectrum of possibilities. Its only by measuring the Universe, or by causing an interaction of an inherently uncertain system with another quantum from the environment, that we discover which of the possible outcomes describes our reality.
The Many Worlds Interpretation of quantum mechanics holds that there are an infinite number of parallel Universes that exist, holding all possible outcomes of a quantum mechanical system, and that making an observation simply chooses one path. This interpretation is philosophically interesting, but may add nothing-of-value when it comes to actual physics.
One of the problems with quantum mechanics is the problem of, What does it mean for whats really going on in our Universe? We have this notion that there is some sort of objective reality a really real reality thats independent of any observer or external influence. That, in some way, the Universe exists as it does without regard for whether anyone or anything is watching or interacting with it.
This very notion is not something were certain is valid. Although its pretty much hard-wired into our brains and our intuitions, reality is under no obligation to conform to them.
What does that mean, then, when it comes to the question of whats truly going on when, for example, we perform the double-slit experiment? If you have two slits in a screen that are narrowly spaced, and you shine a light through it, the illuminated pattern that shows up behind the screen is an interference pattern: with multiple bright lines patterned after the shape of the slit, interspersed with dark lines between them. This is not what youd expect if you threw a series of tiny pebbles through that double slit; youd simply expect two piles of rocks, with each one corresponding to the rocks having gone through one slit or the other.
Results of a double-slit-experiment performed by Dr. Tonomura showing the build-up of an interference pattern of single electrons. If the path of which slit each electron passes through is measured, the interference pattern is destroyed, leading to two piles instead. The number of electrons in each panel are 11 (a), 200 (b), 6000 (c), 40000 (d), and 140000 (e).
The thing about this double slit experiment is this: as long as you dont measure which slit the light goes through, you will always get an interference pattern.
This remains true even if you send the light through one photon at a time, so that multiple photons arent interfering with one another. Somehow, its as though each individual photon is interfering with itself.
Its still true even if you replace the photon with an electron, or other massive quantum particles, whether fundamental or composite. Sending electrons through a double slit, even one at a time, gives you this interference pattern.
And it ceases to be true, immediately and completely, if you start measuring which slit each photon (or particle) went through.
But why? Why is this the case?
Thats one of the puzzles of quantum mechanics: it seems as though its open to interpretation. Is there an inherently uncertain distribution of possible outcomes, and does the act of measuring simply pick out which outcome it is that has occurred in this Universe?
Is it the case that everything is wave-like and uncertain, right up until the moment that a measurement is made, and that act of measuring a critical action that causes the quantum mechanical wavefunction to collapse?
When a quantum particle approaches a barrier, it will most frequently interact with it. But there is a finite probability of not only reflecting off of the barrier, but tunneling through it. The actual evolution of the particle is only determined by measurement and observation, and the wavefunction interpretation only applies to the unmeasured system; once its trajectory has been determined, the past is entirely classical in its behavior.
Or is it the case that each and every possible outcome that could occur actually does occur, but simply not in our Universe? Is it possible that there are an infinite number of parallel Universes out there, and that all possible outcomes occur infinitely many times in a variety of them, but it takes the act of measurement to know which one occurred in ours?
Although these might all seem like radically different possibilities, theyre all consistent (and not, by any means, an exhaustive list of) interpretations of quantum mechanics. At this point in time, the only differences between the Universe they describe are philosophical. From a physical point of view, they all predict the same exact results for any experiment we know how to perform at present.
However, if there are an infinite number of parallel Universes out there and not simply in a mathematical sense, but in a physically real one there needs to be a place for them to live. We need enough Universe to hold all of these possibilities, and to allow there to be somewhere within it where every possible outcome can be real. The only way this could work is if:
From a pre-existing state, inflation predicts that a series of universes will be spawned as inflation continues, with each one being completely disconnected from every other one, separated by more inflating space. One of these bubbles, where inflation ended, gave birth to our Universe some 13.8 billion years ago, where our entire visible Universe is just a tiny portion of that bubbles volume. Each individual bubble is disconnected from all of the others.
The Universe needs to be born infinite because the number of possible outcomes that can occur in a Universe that starts off like ours, 13.8 billion years ago, increases more quickly than the number of independent Universes that come to exist in even an eternally inflating Universe. Unless the Universe was born infinite in size a finite amount of time ago, or it was born finite in size an infinite amount of time ago, its simply not possible to have enough Universes to hold all possible outcomes.
But if the Universe was born infinite and cosmic inflation occurred, suddenly the Multiverse includes an infinite number of independent Universes that start with initial conditions identical to our own. In such a case, anything that could occur not only does occur, but occurs an infinite number of times. There would be an infinite number of copies of you, and me, and Earth, and the Milky Way, etc., that exist in an infinite number of independent Universe. And in some of them, reality unfolds identically to how it did here, right up until the moment when one particular quantum measurement takes place. For us in our Universe, it turned out one way; for the version of us in a parallel Universe, perhaps that outcome is the only difference in all of our cosmic histories.
The inherent width, or half the width of the peak in the above image when youre halfway to the crest of the peak, is measured to be 2.5 GeV: an inherent uncertainty of about +/- 3% of the total mass. The mass of the particle in question, the Z boson, is peaked at 91.187 GeV, but that mass is inherently uncertain by a significant amount.
But when we talk about uncertainty in quantum physics, were generally talking about an outcome whose results havent been measured or decided just yet. Whats uncertain in our Universe isnt past events that have already been determined, but only events whose possible outcomes have not yet been constrained by measurables.
If we think about a double slit experiment thats already occurred, once weve seen the interference pattern, its not possible to state whether a particular electron traveled through slit #1 or slit #2 in the past. That was a measurement we could have made but didnt, and the act of not making that measurement resulted in the interference pattern appearing, rather than simply two piles of electrons.
There is no Universe where the electron travels either through slit #1 or slit #2 and still makes an interference pattern by interfering with itself. Either the electron travels through both slits at once, allowing it to interfere with itself, and lands on the screen in such a way that thousands upon thousands of such electrons will expose the interference pattern, or some measurements occurs to force the electron to solely travel through slit #1 or slit #2 and no interference pattern is recovered.
Perhaps the spookiest of all quantum experiments is the double-slit experiment. When a particle passes through the double slit, it will land in a region whose probabilities are defined by an interference pattern. With many such observations plotted together, the interference pattern can be seen if the experiment is performed properly; if you retroactively ask which slit did each particle go through? you will find youre asking an ill-posed question.
What does this mean?
It means as was recognized by Heisenberg himself nearly a century ago that the wavefunction description of the Universe does not apply to the past. Right now, there are a great many things that are uncertain in the Universe, and thats because the critical measurement or interaction to determine what that things quantum state is has not yet been taken.
In other words, there is a boundary between the classical and quantum the definitive and the indeterminate and the boundary between them is when things become real, and when the past becomes fixed. That boundary, according to physicist Lee Smolin, is what defines now in a physical sense: the moment where the things that were observing at this instant fixes certain observables to have definitively occurred in our past.
We can think about infinite parallel Universes as opening up before us as far as future possibilities go, in some sort of infinitely forward-branching tree of options, but this line of reasoning does not apply to the past. As far as the past goes, at least in our Universe, previously determined events have already been metaphorically written in stone.
This 1993 photo by Carol M. Highsmith shows the last president of apartheid-era South Africa, F.W. de Klerk, alongside president-elect Nelson Mandela, as both were about to receive Americas Liberty Medal for effecting the transition of power away from white minority rule and towards universal majority rule. This event definitively occurred in our Universe.
In a quantum mechanical sense, this boils down to two fundamental questions.
The answer seems to be no and no. To achieve a macroscopic difference from quantum mechanical outcomes means weve already crossed into the classical realm, and that means the past history is already determined to be different. There is no way back to a present where Nelson Mandela dies in 2013 if he already died in prison in the 1980s.
Furthermore, the only places where these parallel Universes can exist is beyond the limit of our observable Universe, where theyre completely causally disconnected from anything that happens here. Even if theres a quantum mechanical entanglement between the two, the only way information can be transferred between those Universes is limited by the speed of light. Any information about what occurred over there simply doesnt exist in our Universe.
We can imagine a very large number of possible outcomes that could have resulted from the conditions our Universe was born with, and a very large number of possible outcomes that could have occurred over our cosmic history as particles interact and time passes. If there were enough possible Universes out there, it would also be possible that the same set of outcomes happened in multiple places, leading to the scenario of infinite parallel Universes. Unfortunately, we only have the one Universe we inhabit to observe, and other Universes, even if they exist, are not causally connected to our own.
The truth is that there may well be parallel Universes out there in which all of these things did occur. Maybe there is a Berenstein Bears out there, along with Shazaam the movie and a Nelson Mandela who died in prison in the 1980s. But that has no bearing on our Universe; they never occurred here and no one who remembers otherwise is correct. Although the neuroscience of human memory is not fully understood, the physical science of quantum mechanics is well-enough understood that we know whats possible and what isnt. You do have a faulty memory, and parallel Universes arent the reason why.
Excerpt from:
Could quantum mechanics explain the Mandela effect? - Big Think
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]