One of the great existential worries that plagues the minds of theoretical physicists is that the vacuum of space might not be in its true vacuum state, but could instead reside in a false vacuum instead. If you were to remove everything you could imagine from a large region of space, including:
you would be left with purely empty space, or as close as we can come to a physical definition of nothing. You might expect that if you were to draw an imaginary box around this region of nothing and measured the total amount of energy inside, you would find that it was precisely zero. But thats not what we find; we find that there actually is a positive, non-zero amount of energy inherent to space itself, even if we remove all the identifiable quantum and classical sources of matter and energy. What does this mean for the nature of the quantum vacuum, and in particular for the distinction between true vacuum and false vacuum? Thats what Eric Mars wants to know, asking:
Could you please explain what false vacuum and true vacuum mean and its implications in the existence of the universe.
Its a great question, and it requires that we start with the idea specifically for physics of zero.
In mathematics, zero is simply a number, signifying the absence of either a positive or negative amount of any quantity. In physics, however, there is another way to define zero: the zero-point energy of a system, or the lowest possible energy state that it can achieve while still remaining the same system we were initially talking about. For any physical system we can dream up, there will be at least one configuration for that system that has the lowest total amount of energy in it. For any physical system you can imagine, there is always at least one lowest-energy configuration.
That lowest-energy configuration is known as the zero-point energy of a system. It would make sense and for many of us, we would simply intuit that its so if the zero-point energy of any system were defined as zero. But that is not quite how it works.
Take the hydrogen atom, for example: a single electron orbiting a single proton. If you think classically, you would imagine that the electron could orbit that proton at any radius at all, from a large one down to a small one. Just as a planet can orbit a star at any distance, based on their mutual masses and relative speeds, you would think that a negatively charged electron could orbit a positively charged proton at any distance as well, based simply on the speed of the orbit and the balance of kinetic and potential energy.
But this ignores an extraordinarily important property of nature: the fact that the Universe is fundamentally quantum mechanical, and that the only allowable energy levels for an electron orbiting a proton are quantized. As a result, there is a lowest possible energy state that a physical system such as this can have, and that does not correspond to the electron sitting at rest directly atop the proton (that is, the lowest imaginable energy state). Instead, there is a lowest-energy state that is physically allowable, which corresponds to the electron orbiting the proton in the n=1 energy state.
Even if you cool your system down to absolute zero, there will still be this finite, non-zero energy that your system will have.
This idea, of a zero-point energy to any quantum mechanical system, goes all the way back to Max Planck in 1911 and was extended to fields by Einstein and his collaborator, Otto Stern (the same Stern who formulated the infamous Stern-Gerlach experiment), and a paper they wrote back in 1913. If we fast-forward to today, more than 100 years later, we now understand that our Universe is governed by a combination of General Relativity, our law of gravitation, and quantum field theory, which describes the other three fundamental forces.
The idea of a zero-point energy to the fabric of space itself shows up in both General Relativity and quantum field theory, but it comes about in vastly different ways. In General Relativity, the curvature of space is what determines the future motion of matter and energy through the Universe, while the presence and distribution and motion of matter and energy in turn determines the curvature of space. Matter and energy tell spacetime how to curve, and that curved spacetime tells matter and energy how to move.
Almost.
Why is this only almost true? Because, as anyone who has ever performed an indefinite integral (from calculus) will recall, you are free to add a constant to your answer: the dreaded plus c.
In General Relativity, this constant comes into play as a cosmological constant, and it can take on any positive or negative value that we like. When Einstein wanted to construct a static Universe, he threw in a positive constant to keep his toy model of the Universe one where masses were evenly distributed infinitely throughout space from collapsing; the cosmological constant would counteract gravitational attraction. There was no reason for this constant to have the positive, non-zero value that he assigned to it. He simply asserted it must be so, otherwise the Universe could not be static. With the discovery of the expanding Universe, the constant was no longer needed, and was discarded for more than 60 years.
On the other hand, there is quantum field theory, too. Quantum field theory encourages you to imagine all the ways that particles can interact with one another, including via the creation/annihilation of particle-antiparticle pairs as intermediate steps, radiative corrections, and any other sets of interactions that arnt forbidden by the laws of quantum physics. It then goes a step farther, however, which most people may not recognize. It says that in addition to these interacting fields in the presence of matter and energy, there are vacuum contributions, which represent how quantum fields in the vacuum of space, with no particles present at all, behave.
Now, heres where things get uncomfortable: we do not know how to calculate the zero-point energy of space from these quantum field theory methods, either. Each individual channel that we know how to calculate can contribute to this zero-point energy, and the way we find an individual contribution is to calculate what we call its vacuum expectation value. The problem is each such channel has an enormous vacuum expectation value: more than 100 orders of magnitude too large to be possible. Some channels have positive contributions and others have negative contributions.
Being unable to make a sensible calculation, we made an ignorant assumption: that all of the contributions would cancel out, summing to zero, and that the zero-point energy of space would, in fact, be precisely equal to zero.
Then, in the 1990s, something changed again. Observations of the Universe began to indicate that there was something causing the Universes expansion to accelerate, and that thing, whatever it is, was consistent not with any form of matter or radiation, but rather with a positive, non-zero amount of zero-point energy to the fabric of space itself. We had just measured the value of the vacuum energy inherent to space, and it was very small, but very importantly, greater than zero.
This opened up a slew of questions.
Why would we worry about the last one? Because the most important property of the vacuum of space isnt what the precise value of the zero-point energy is; rather, its vital to our Universes stability that the vacuum of space has a zero-point energy that doesnt change. And just as a hydrogen atom in any excited state will have the capability of transitioning to a lower-energy state on its way down to the zero-point state, a Universe in a false vacuum will remain capable of transitioning to a true vacuum (or a lower-energy but still false vacuum) state.
You can think of this the same way you would think about starting a ball atop a mountain and allowing it to roll down and down, and down, and down some more until it finally came to rest. If your mountainside is smooth, you can imagine that you would easily roll all the way down into the lowest part of the valley beneath the mountain, where it would settle. Thats a true vacuum state: the lowest-energy state there is, where its not physically possible to transition to a lower-energy state. In a true vacuum, youre already as low as you can go.
But if your mountainside is craggy, with pits, divots, moguls, and glacial lakes, you can imagine that your ball might come to rest somewhere other than the lowest possible point. Any other place it can remain for an indefinite period of time is not the true minimum but rather a false one. If we are talking about the vacuum state of the Universe, that means anything other than the lowest possible state is a false vacuum state.
Given that we have a positive, nonzero value for the cosmological constant in our Universe, its certainly possible that we live in a false vacuum state, and that the true vacuum, whatever it may be, exists at some other, lower-energy state.
Now, it might also not be the case; we may be in the true vacuum state. If so, there is no possibility of transitioning to a lower-energy state, and here we will remain for the remainder of our Universes existence.
But what if we live in a false vacuum state? Well, in a quantum Universe, no matter how large the distance is between a false and true minimum, how high the barrier is separating the false and true minimum, or how quickly or slowly the quantum mechanical wavefunction describing your state spreads out, there is always a finite, greater-than-zero probability of quantum tunneling from the higher-energy to the lower-energy state.
This is usually referred to as the vacuum catastrophe, because if we do quantum tunnel to a lower energy state, we have no reason to believe that the laws and/or constants that govern the Universe will remain unchanged. Wherever this vacuum decay occurs, things like atoms, planets, stars, and yes, human beings, will all be destroyed. This bubble of destruction will propagate outward at the speed of light, which means if it occurs, right now, anywhere within about 18 billion light-years of us, we will eventually be destroyed by it. This may even be suggested by our best measurements of the properties of the fundamental particles, which indicates that the electroweak force, one of the fundamental forces of nature, may be inherently metastable.
Its a grim thought, especially because we would never see it coming. One day, we would simply awaken to this wave of destruction that comes upon us at the speed of light, and then we would all be gone. In some ways, it is the most painless way to go that we can imagine, but it is also one of the saddest. Our cosmic legacy of all that ever was, is, or will be would instantaneously come to an end. All of the work that 13.8 billion years of cosmic evolution has done to create a Universe teeming with the ingredients for life, and possibly countless realizations of it, would be forever wiped out.
And yet, it is possible that something similar to this has already occurred: with the end of cosmic inflation and the onset of the hot Big Bang. A transition from a presumably very, very high energy vacuum state to a much lower-energy one, albeit a fundamentally different type of transition from quantum tunneling, is what brought inflation to an end and filled our Universe with matter and radiation some 13.8 billion years ago. Nevertheless, the possibility that we live in a false vacuum should remind us of how fleeting and fragile, and dependent upon the stability of the laws of physics, everything in our Universe is. If we live in a false vacuum state, and we could, every moment of existence could be our last.
Send in your Ask Ethan questions to startswithabang at gmail dot com!
Read this article:
Ask Ethan: Would a false vacuum state of the Universe lead to our destruction? - Big Think
- Physicists breed Schrdinger's cats to find boundaries of the | Cosmos - Cosmos [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The application of three-axis low energy spectroscopy in quantum physics research - Phys.Org [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Scientists 'BREED' Schrodinger's Cat in massive quantum physics breakthrough - Express.co.uk [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Quantum Physics: Are Entangled Particles Connected Via An Undetected Dimension? - Forbes [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- The World Of Quantum Physics: EVERYTHING Is Energy : In5D ... [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Introduction to quantum mechanics - Wikipedia [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- A general election, like quantum physics, is a thing of waves and particles - The Tablet [Last Updated On: May 4th, 2017] [Originally Added On: May 4th, 2017]
- 14-Year-Old Earns Physics Degree From TCU CBS Dallas / Fort ... - CBS DFW [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations ... - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum Entanglement Persists Even Under High Accelerations, Experiments Reveal - International Business Times [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Quantum - Wikipedia [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Unbreakable quantum entanglement - Phys.Org [Last Updated On: May 11th, 2017] [Originally Added On: May 11th, 2017]
- Physics may bring faster solutions for tough computational problems - Phys.Org [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- UBC researchers propose answer to fundamental space problem - CBC.ca [Last Updated On: May 17th, 2017] [Originally Added On: May 17th, 2017]
- Quantum Biology and the Frog Prince - ScienceBlog.com (blog) [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Marriage Of Einstein's Theory Of Relativity And Quantum Physics Depends On The Pull Of Gravity - Forbes [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- New Research May Reconcile General Relativity and Quantum Mechanics - Futurism [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Testing quantum field theory in a quantum simulator - Phys.org - Phys.Org [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- A classic quantum test could reveal the limits of the human mind - New Scientist [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Teleportation Could Be Possible Using Quantum Physics - Futurism - Futurism [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Nobel winner to talk cats, computers and quantum physics - AroundtheO [Last Updated On: May 23rd, 2017] [Originally Added On: May 23rd, 2017]
- Could Ant-Man Beat Superman With Quantum Physics? - Heroic Hollywood (blog) [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physicists Discover Geometry Underlying Particle Physics [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Home - Center for Quantum Activism [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- Physics - Wikipedia [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- What Quantum Physics Can Tell Us about the Afterlife ... [Last Updated On: May 26th, 2017] [Originally Added On: May 26th, 2017]
- A Quantum Physicist Explains How Ant-Man Can Beat Superman - Inverse [Last Updated On: May 28th, 2017] [Originally Added On: May 28th, 2017]
- Academic Journal: Quantum Physics Is 'Oppressive' to Marginalized People - National Review [Last Updated On: May 30th, 2017] [Originally Added On: May 30th, 2017]
- University of Arizona Scholar Creates a Feminist Brand of Physics to ... - Breitbart News [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Feminist Launches 'Intersectional Quantum Physics' to End Newton's 'Oppression' - PJ Media [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- In atomic propellers, quantum phenomena can mimic everyday ... - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Quantum physics is oppressive - Patheos - Patheos (blog) [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- It's widely abused as a buzzword. But can quantum mechanics explain how we think? - National Post [Last Updated On: June 5th, 2017] [Originally Added On: June 5th, 2017]
- Quantum Physics and Love are Super Weird and Confusing, but This Play Makes Sense of Them Both - LA Magazine [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- One step closer to the quantum internet by distillation - Phys.Org [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- Solving systems of linear equations with quantum mechanics - Phys.Org [Last Updated On: June 10th, 2017] [Originally Added On: June 10th, 2017]
- Neural networks take on quantum entanglement - Phys.Org [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Chinese satellite breaks a quantum physics record, beams entangled photons from space to Earth - Los Angeles Times [Last Updated On: June 15th, 2017] [Originally Added On: June 15th, 2017]
- Cybersecurity Attacks Are a Global Threat. Chinese Scientists Have the Answer: Quantum Mechanics - Newsweek [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- New Quantum-Entanglement Record Could Spur Hack-Proof Communications - Yahoo News [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- What Is Quantum Mechanics? - livescience.com [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- China sets new record for quantum entanglement en route to build new communication network - NEWS.com.au [Last Updated On: June 19th, 2017] [Originally Added On: June 19th, 2017]
- Physicists Demonstrate Record Breaking Long-Distance Quantum Entanglement in Space - Futurism [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Viewpoint: A Roadmap for a Scalable Topological Quantum Computer - Physics [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- How Schrdinger's Cat Helps Explain the New Findings About the Quantum Zeno Effect - Futurism [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- BMW and Volkswagen Try to Beat Apple and Google at Their Own Game - New York Times [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- How quantum physics could revolutionize casinos and betting if you can understand it - Casinopedia [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Quantum thermometer or optical refrigerator? - Phys.org - Phys.Org [Last Updated On: June 23rd, 2017] [Originally Added On: June 23rd, 2017]
- Atomic imperfections move quantum communication network closer ... - Phys.Org [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- DoE Launches Chicago Quantum Exchange - HPCwire (blog) [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: June 26th, 2017] [Originally Added On: June 26th, 2017]
- Physicists settle debate over how exotic quantum particles form - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Physicists make quantum leap in understanding life's nanoscale machinery - Phys.Org [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- How quantum trickery can scramble cause and effect - Nature.com [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Berkeley Lab Intern Finds Her Way in Particle Physics | Berkeley Lab - Lawrence Berkeley National Laboratory [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum Physics News - Phys.org - News and Articles on ... [Last Updated On: June 28th, 2017] [Originally Added On: June 28th, 2017]
- Quantum computers are about to get real - Science News Magazine [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Physics4Kids.com: Modern Physics: Quantum Mechanics [Last Updated On: June 29th, 2017] [Originally Added On: June 29th, 2017]
- Payments Innovation - A Quantum World Of Payments - Finextra (blog) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Why can't quantum theory and relativity get along? - Brantford Expositor [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum computing, physicists report - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Telecommunications, Meet Quantum Physics - Electronics360 [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- How young is too young to talk to kids about science? Never, says one quantum physicist - ABC Local [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Supercool breakthrough brings new quantum benchmark - Phys.org - Phys.Org [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physics For Toddlers . News | OPB - OPB News [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum Physics Provide Evidence that the Future Influences the Past - Edgy Labs (blog) [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- This quantum theory predicts that the future might be influencing the ... - ScienceAlert [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Physicists May Have Discovered One of the Missing Pieces of Quantum Theory - Futurism [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Something New For Baby To Chew On: Rocket Science And ... - NPR - NPR [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- A New Quantum Theory Predicts That the Future Could Be Influencing the Past - Big Think [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Basic Assumptions of Physics Might Require the Future to Influence ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Scientists teleport particle into space in major breakthrough for quantum physics - The Independent [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Rockstar scientist David Reilly takes the axe to quantum physics - The Sydney Morning Herald [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- Quantum Mechanics Could Shake Up Our Understanding of Earth's ... - Gizmodo [Last Updated On: July 14th, 2017] [Originally Added On: July 14th, 2017]
- The Standard Model of particle physics is brilliant and completely flawed - ABC Online [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Quantum mechanics inside Earth's core - Phys.org - Phys.Org [Last Updated On: July 17th, 2017] [Originally Added On: July 17th, 2017]
- Making a quantum leap in space research - Shanghai Daily (subscription) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- Unlocking the Secrets of Quantum Physics to Create New Materials - Yu News (blog) [Last Updated On: August 6th, 2017] [Originally Added On: August 6th, 2017]
- China's Silicon Valley aims to become the country's top research center - Abacus [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]